Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration

被引:100
|
作者
Ma, Jinxing [1 ]
Ma, Junjun [1 ,2 ]
Zhang, Changyong [1 ]
Song, Jingke [1 ,3 ]
Dong, Wenjia [1 ]
Waite, T. David [1 ]
机构
[1] Univ New South Wales, Sch Civil & Environm Engn, UNSW Water Res Ctr, Sydney, NSW 2052, Australia
[2] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[3] Tongji Univ, Sch Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China
基金
澳大利亚研究理事会;
关键词
Flow-electrode capacitive deionization; Membrane stack; Energy efficiency; Productivity; WATER DESALINATION; ENERGY RECOVERY; PERFORMANCE; EFFICIENCY;
D O I
10.1016/j.watres.2019.115186
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flow-electrode capacitive deionization (FCDI) is an attractive variant of CDI with distinct advantages over fixed electrode CDI including the capability for seawater desalination, high flow efficiency and easy management of the electrodes. Challenges exist however in increasing treatment capacity with this attempted here through use of a membrane stack configuration. By comparison of standardised metrics (in particular, average salt removal rate (ASRR), energy normalized removed salt (ENRS) and productivity), results show that that an FCDI system with two pairs of ion exchange membranes had the highest efficiency in desalting a brackish influent (1000 mg L-1) to potable levels (similar to 150 mg L-1) at higher ASRR and ENRS. Further increase in the number of membrane pairs resulted in a decrease in current efficiency, likely as a result of the dominance of electrodialysis. Results of this study provide proof of concept that (semi-)continuous desalination can be achieved in FCDI at high energy efficiency (13.8%-20.2%) and productivity (> 100 L m(-2) h(-1)) and, importantly, provide insight into possible approaches to scaling up FCDI such that energy-efficient water desalination can be achieved. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Flow-Electrode Capacitive Deionization for Double Displacement Reactions
    Linnartz, Christian J.
    Rommerskirchen, Alexandra
    Wessling, Matthias
    Gendel, Youri
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (05): : 3906 - 3912
  • [22] Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes
    He, Calvin
    Lian, Boyue
    Ma, Jinxing
    Zhang, Changyong
    Wang, Yuan
    Mo, Hengliang
    Waite, T. David
    WATER RESEARCH, 2021, 203
  • [23] Concurrent Nitrogen and Phosphorus Recovery Using Flow-Electrode Capacitive Deionization
    Bian, Yanhong
    Chen, Xi
    Lu, Lu
    Liang, Peng
    Ren, Zhiyong Jason
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (08) : 7844 - 7850
  • [24] Energy recovery from the flow-electrode capacitive deionization
    Ma, Junjun
    Liang, Peng
    Sun, Xueliang
    Zhang, Helan
    Bian, Yanhong
    Yang, Fan
    Bai, Junfei
    Gong, Qianming
    Huang, Xia
    JOURNAL OF POWER SOURCES, 2019, 421 : 50 - 55
  • [25] Optimal conditions for efficient flow-electrode capacitive deionization
    Tang, Kexin
    Yiacoumi, Sotira
    Li, Yuping
    Gabitto, Jorge
    Tsouris, Costas
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 240
  • [26] New insights into the mechanism of flow-electrode capacitive deionization
    Nativ, Paz
    Badash, Yuval
    Gendel, Youri
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 76 : 24 - 28
  • [27] Flow-electrode capacitive deionization: A review and new perspectives
    Yang, Fan
    He, Yunfei
    Rosentsvit, Leon
    Suss, Matthew E.
    Zhang, Xiaori
    Gao, Tie
    Liang, Peng
    WATER RESEARCH, 2021, 200
  • [28] Effective fluoride removal from brackish groundwaters by flow-electrode capacitive deionization (FCDI) under a continuous-flow mode
    Jiang, Huan
    Zhang, Jing
    Luo, Kunyue
    Xing, Wenle
    Du, Jiaxin
    Dong, Yi
    Li, Xiaoting
    Tang, Wangwang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804
  • [29] Water Recovery Rate in Short-Circuited Closed-Cycle Operation of Flow-Electrode Capacitive Deionization (FCDI)
    Ma, Junjun
    Ma, Jinxing
    Zhang, Changyong
    Song, Jingke
    Collins, Richard N.
    Waite, T. David
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (23) : 13859 - 13867
  • [30] The electrode materials in flow-electrode capacitive deionization desalination: a mini review
    Jiang, Yu-Xin
    Zhang, Wen-Chao
    Deng, Yu-Mei
    Cao, Jing-Xiao
    Asare, Justice Annor
    Alhassan, Sikpaam Issaka
    Zhang, Fang-Li
    Wang, Ping
    Wang, Hai-Ying
    RARE METALS, 2025,