Isolated singularities of the prescribed mean curvature equation in Minkowski 3-space

被引:2
作者
Galvez, Jose A. [1 ]
Jimenez, Asun [2 ]
Mira, Pablo [3 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Fed Fluminense, IME, Dept Geometria, BR-2421020 Niteroi, RJ, Brazil
[3] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30203, Spain
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2018年 / 35卷 / 06期
关键词
Quasilinear elliptic equation; Isolated singularity; Prescribed mean curvature; Boundary regularity; MAXIMAL SURFACES; ELLIPTIC-SYSTEMS; SPACE; HYPERSURFACES;
D O I
10.1016/j.anihpc.2018.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a classification of non-removable isolated singularities for real analytic solutions of the prescribed mean curvature equation in Minkowski 3-space. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1631 / 1644
页数:14
相关论文
共 21 条
[1]   THE GAUSS MAP AND SPACELIKE SURFACES WITH PRESCRIBED MEAN-CURVATURE IN MINKOWSKI 3-SPACE [J].
AKUTAGAWA, K ;
NISHIKAWA, S .
TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (01) :67-82
[2]  
[Anonymous], ANALYSIS
[4]   Singularities of spacelike constant mean curvature surfaces in Lorentz-Minkowski space [J].
Brander, David .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2011, 150 :527-556
[5]  
Courant R., 1950, Dirichlets Principle, Conformal Mapping, and Minimal Surfaces
[7]   GENERALIZED MAXIMAL SURFACES IN LORENTZ-MINKOWSKI SPACE L3 [J].
ESTUDILLO, FJM ;
ROMERO, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :515-524
[8]   The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space [J].
Fernández, I ;
López, FJ ;
Souam, R .
MATHEMATISCHE ANNALEN, 2005, 332 (03) :605-643
[9]  
Fernández I, 2007, MANUSCRIPTA MATH, V122, P439, DOI 10.1007/s00229-007-0079-1
[10]   Embedded isolated singularities of flat surfaces in hyperbolic 3-space [J].
Gálvez, JA ;
Mira, P .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (02) :239-260