Feature selection in multimedia: The state-of-the-art review

被引:24
作者
Lee, Pui Yi [1 ]
Loh, Wei Ping [1 ]
Chin, Jeng Feng [1 ]
机构
[1] Univ Sains Malaysia, Sch Mech Engn, Engn Campus, Nibong Tebal 14300, Penang, Malaysia
关键词
Feature selection; Multimedia; Data mining; Search strategies; FEATURE SUBSET-SELECTION; SPARSE FEATURE-SELECTION; TEXT DETECTION; INSTANCE SELECTION; MUTUAL INFORMATION; IMAGE ANNOTATION; ATTENTION MODEL; VIDEO; CLASSIFICATION; RECOGNITION;
D O I
10.1016/j.imavis.2017.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimedia data mining, particularly feature selection (FS), has been successfully applied in recent classification and recognition works. However, only a few studies in the contemporary literature have reviewed FS (e.g., analyses of data pre-processing prior to classification and clustering). This study aimed to fill this research gap by presenting an extensive survey on the current development of FS in multimedia. A total of 70 related papers published from 2001 to 2017 were collected from multiple databases. Breakdowns and analyses were performed on data types, methods, search strategies, performance measures, and challenges. The development trend of FS presages the increased prominence of heuristic search strategies and hybrid FS in the latest multimedia data mining. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [21] A Review on State-of-the-Art Power Line Inspection Techniques
    Yang, Lei
    Fan, Junfeng
    Liu, Yanhong
    Li, En
    Peng, Jinzhu
    Liang, Zize
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (12) : 9350 - 9365
  • [22] Deep learning and the electrocardiogram: review of the current state-of-the-art
    Somani, Sulaiman
    Russak, Adam J.
    Richter, Felix
    Zhao, Shan
    Vaid, Akhil
    Chaudhry, Fayzan
    De Freitas, Jessica K.
    Naik, Nidhi
    Miotto, Riccardo
    Nadkarni, Girish N.
    Narula, Jagat
    Argulian, Edgar
    Glicksberg, Benjamin S.
    EUROPACE, 2021, 23 (08): : 1179 - 1191
  • [23] State-of-the-art review on deep learning in medical imaging
    Biswas, Mainak
    Kuppili, Venkatanareshbabu
    Saba, Luca
    Edla, Damodar Reddy
    Suri, Harman S.
    Cuadrado-Godia, Elisa
    Laird, John R.
    Marinhoe, Rui Tato
    Sanches, Joao M.
    Nicolaides, Andrew
    Suri, Jasjit S.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2019, 24 : 392 - 426
  • [24] A Review of State-of-the-Art Methodologies and Applications in Action Recognition
    Zhao, Lanfei
    Lin, Zixiang
    Sun, Ruiyang
    Wang, Aili
    ELECTRONICS, 2024, 13 (23):
  • [25] State-of-the-Art Review of Deep Learning Methods in Fake Banknote Recognition Problem
    Sadyk, Ualikhan
    Baimukashev, Rashid
    Turan, Cemil
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 848 - 856
  • [26] Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review
    Ose, Benjamin
    Sattar, Zeeshan
    Gupta, Amulya
    Toquica, Christian
    Harvey, Chris
    Noheria, Amit
    CURRENT CARDIOLOGY REPORTS, 2024, 26 (06) : 561 - 580
  • [27] Automatic Target Recognition in Synthetic Aperture Radar Imagery: A State-of-the-Art Review
    El-Darymli, Khalid
    Gill, Eric W.
    McGuire, Peter
    Power, Desmond
    Moloney, Cecilia
    IEEE ACCESS, 2016, 4 : 6014 - 6058
  • [28] Feature selection in machine learning: A new perspective
    Cai, Jie
    Luo, Jiawei
    Wang, Shulin
    Yang, Sheng
    NEUROCOMPUTING, 2018, 300 : 70 - 79
  • [29] A Survey on Evolutionary Computation Approaches to Feature Selection
    Xue, Bing
    Zhang, Mengjie
    Browne, Will N.
    Yao, Xin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (04) : 606 - 626
  • [30] A review of feature selection methods on synthetic data
    Bolon-Canedo, Veronica
    Sanchez-Marono, Noelia
    Alonso-Betanzos, Amparo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 34 (03) : 483 - 519