Specific heat in the integer quantum Hall effect: An exact diagonalization approach

被引:6
|
作者
Mandal, SS
Acharyya, M
机构
[1] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, Condensed Matter Theory Unit, Bangalore 560064, Karnataka, India
来源
PHYSICA B | 1998年 / 252卷 / 1-2期
关键词
integer quantum Hall effect; specific heat; tight binding model;
D O I
10.1016/S0921-4526(98)00047-7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have studied the integer quantum Hall effect at finite temperatures by diagonalizing a single body tight binding model Hamiltonian including Aharonov-Bohm phase. We have studied the energy dependence of the specific heat and the Hall conductivity at a given temperature. The specific heat shows a sharp peak between two consecutive Hall plateaus. At very low temperatures, the numerical results of the temperature variations of specific heat (in the plateau region) are in good agreement with the analytical results. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 50 条
  • [21] Integer Quantum Hall Effect for Bosons
    Senthil, T.
    Levin, Michael
    PHYSICAL REVIEW LETTERS, 2013, 110 (04)
  • [22] Optical Hall Effect in the Integer Quantum Hall Regime
    Ikebe, Y.
    Morimoto, T.
    Masutomi, R.
    Okamoto, T.
    Aoki, H.
    Shimano, R.
    PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [23] Bilayer quantum Hall systems at filling factor ν = 2:: An exact diagonalization study
    Schliemann, J
    MacDonald, AH
    PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4437 - 4440
  • [24] A semiclassical approach to the integer quantum Hall problem
    Hidalgo, MA
    MICROELECTRONIC ENGINEERING, 1998, 43-4 : 453 - 458
  • [25] Integer quantum Hall effect in a PbTe quantum well
    Chitta, V. A.
    Desrat, W.
    Maude, D. K.
    Piot, B. A.
    Oliveira, N. F., Jr.
    Rappl, P. H. O.
    Ueta, A. Y.
    Abramof, E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2): : 124 - 127
  • [26] A heuristic quantum theory of the integer quantum Hall effect
    Kramer, Tobias
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (10): : 1243 - 1260
  • [27] Effects of quantum deformation on the integer quantum Hall effect
    Andrade, Fabiano M.
    Silva, Edilberto O.
    Assafrao, Denise
    Filgueiras, Cleverson
    EPL, 2016, 116 (03)
  • [28] Magnetization of InAs parabolic quantum dot: An exact diagonalization approach
    Aswathy, K. M.
    Kumar, Sanjeev D.
    2ND INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES: MICRO TO NANO 2015 (ETMN-2015), 2016, 1724
  • [29] Introduction to the theory of the integer quantum Hall effect
    Doucot, Benoit
    COMPTES RENDUS PHYSIQUE, 2011, 12 (04) : 323 - 331
  • [30] Ettingshausen effect in integer quantum Hall systems
    Komori, Y
    Okamoto, T
    Physics of Semiconductors, Pts A and B, 2005, 772 : 555 - 556