Quantitative Infrared Photoelasticity of Silicon Photovoltaic Wafers Using a Discrete Dislocation Model

被引:4
作者
Lin, T. -W. [1 ]
Horn, G. P. [1 ]
Johnson, H. T. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2015年 / 82卷 / 01期
基金
美国国家科学基金会;
关键词
photoelasticity; residual thermal stress; discrete dislocation modeling; CRYSTALLINE SILICON; SCREW DISLOCATIONS;
D O I
10.1115/1.4028987
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Residual stress and crystalline defects in silicon wafers can affect solar cell reliability and performance. Infrared photoelastic measurements are performed for stress mapping in monocrystalline silicon photovoltaic (PV) wafers and compared to photoluminescence (PL) measurements. The wafer stresses are then quantified using a discrete dislocation-based numerical modeling approach, which leads to simulated photoelastic images. The model accounts for wafer stress relaxation due to dislocation structures. The wafer strain energy is then analyzed with respect to the orientation of the dislocation structures. The simulation shows that particular locations on the wafer have only limited slip systems that reduce the wafer strain energy. Experimentally observed dislocation structures are consistent with these observations from the analysis, forming the basis for a more quantitative infrared photoelasticity-based inspection method.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Relationship of band-edge luminescence to recombination lifetime in silicon wafers [J].
Ahrenkiel, R. K. ;
Johnston, S. W. ;
Metzger, W. K. ;
Dippo, P. .
JOURNAL OF ELECTRONIC MATERIALS, 2008, 37 (04) :396-402
[2]  
BIEGELSEN DK, 1974, PHYS REV LETT, V32, P1196, DOI 10.1103/PhysRevLett.32.1196
[3]   A non-singular continuum theory of dislocations [J].
Cai, W ;
Arsenlis, A ;
Weinberger, CR ;
Bulatov, VV .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (03) :561-587
[4]   Developing rigorous boundary conditions to simulations of discrete dislocation dynamics [J].
Fivel, MC ;
Canova, GR .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1999, 7 (05) :753-768
[5]   Photoelastic strain measurement in GaP (100) wafers under external stresses [J].
Fukuzawa, M. ;
Yamada, M. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2008, 19 (Suppl 1) :S83-S86
[6]   Photoelastic characterization of Si wafers by scanning infrared polariscope [J].
Fukuzawa, M ;
Yamada, M .
JOURNAL OF CRYSTAL GROWTH, 2001, 229 (01) :22-25
[7]   Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon [J].
Ganapati, Vidya ;
Schoenfelder, Stephan ;
Castellanos, Sergio ;
Oener, Sebastian ;
Koepge, Ringo ;
Sampson, Aaron ;
Marcus, Matthew A. ;
Lai, Barry ;
Morhenn, Humphrey ;
Hahn, Giso ;
Bagdahn, Joerg ;
Buonassisi, Tonio .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
[8]   BIREFRINGENCE IMAGES OF SCREW DISLOCATIONS VIEWED END-ON IN CUBIC-CRYSTALS [J].
GE, CZ ;
MING, NB ;
TSUKAMOTO, K ;
MAIWA, K ;
SUNAGAWA, I .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (11) :7556-7564
[9]   A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs [J].
Goodrich, Alan ;
Hacke, Peter ;
Wang, Qi ;
Sopori, Bhushan ;
Margolis, Robert ;
James, Ted L. ;
Woodhouse, Michael .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 114 :110-135
[10]   Advances in Discrete Dislocations Dynamics and Multiscale Modeling [J].
Groh, S. ;
Zbib, H. M. .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2009, 131 (04)