Radiomics Study for Predicting the Expression of PD-L1 and Tumor Mutation Burden in Non-Small Cell Lung Cancer Based on CT Images and Clinicopathological Features

被引:47
作者
Wen, Qiang [1 ]
Yang, Zhe [1 ]
Dai, Honghai [1 ]
Feng, Alei [1 ]
Li, Qiang [1 ]
机构
[1] Shandong First Med Univ, Shandong Prov Hosp, Dept Radiat Oncol, Jinan, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2021年 / 11卷
关键词
radiomics features; computed tomography; non-small cell lung cancer (NSCLC); programmed death-ligand 1 (PD-L1); tumor mutation burden (TMB); DEATH-LIGAND; 1; INDUCED B7-H1 EXPRESSION; INTRATUMOR HETEROGENEITY; DOCETAXEL; PEMBROLIZUMAB; INDUCTION; RELEVANCE; NIVOLUMAB; BIOMARKER; BLOCKADE;
D O I
10.3389/fonc.2021.620246
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The present study compared the predictive performance of pretreatment computed tomography (CT)-based radiomics signatures and clinicopathological and CT morphological factors for ligand programmed death-ligand 1 (PD-L1) expression level and tumor mutation burden (TMB) status and further explored predictive models in patients with advanced-stage non-small cell lung cancer (NSCLC). Methods: A total of 120 patients with advanced-stage NSCLC were enrolled in this retrospective study and randomly assigned to a training dataset or validation dataset. Here, 462 radiomics features were extracted from region-of-interest (ROI) segmentation based on pretreatment CT images. The least absolute shrinkage and selection operator (LASSO) and logistic regression were applied to select radiomics features and develop combined models with clinical and morphological factors for PD-L1 expression and TMB status prediction. Ten-fold cross-validation was used to evaluate the accuracy, and the predictive performance of these models was assessed using receiver operating characteristic (ROC) and area under the curve (AUC) analyses. Results:The PD-L1-positive expression level correlated with differentiation degree (p = 0.005), tumor shape (p = 0.006), and vascular convergence (p = 0.007). Stage (p = 0.023), differentiation degree (p = 0.017), and vacuole sign (p = 0.016) were associated with TMB status. Radiomics signatures showed good performance for predicting PD-L1 and TMB with AUCs of 0.730 and 0.759, respectively. Predictive models that combined radiomics signatures with clinical and morphological factors dramatically improved the predictive efficacy for PD-L1 (AUC = 0.839) and TMB (p = 0.818). The results were verified in the validation datasets. Conclusions: Quantitative CT-based radiomics features have potential value in the classification of PD-L1 expression levels and TMB status. The combined model further improved the predictive performance and provided sufficient information for the guiding of immunotherapy in clinical practice, and it deserves further analysis.
引用
收藏
页数:12
相关论文
共 71 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data [J].
Aguiar, Pedro N., Jr. ;
De Mello, Ramon Andrade ;
Hall, Peter ;
Tadokoro, Hakaru ;
de Lima, Gilberto .
IMMUNOTHERAPY, 2017, 9 (06) :499-506
[3]   The Promise of Digital Biopsy for the Prediction of Tumor Molecular Features and Clinical Outcomes Associated With Immunotherapy [J].
Banna, Giuseppe Luigi ;
Olivier, Timothde ;
Rundo, Francesco ;
Malapelle, Umberto ;
Fraggetta, Filippo ;
Libra, Massimo ;
Addeo, Alfredo .
FRONTIERS IN MEDICINE, 2019, 6
[4]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[5]   Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer [J].
Brahmer, Julie ;
Reckamp, Karen L. ;
Baas, Paul ;
Crino, Lucio ;
Eberhardt, Wilfried E. E. ;
Poddubskaya, Elena ;
Antonia, Scott ;
Pluzanski, Adam ;
Vokes, Everett E. ;
Holgado, Esther ;
Waterhouse, David ;
Ready, Neal ;
Gainor, Justin ;
Aren Frontera, Osvaldo ;
Havel, Libor ;
Steins, Martin ;
Garassino, Marina C. ;
Aerts, Joachim G. ;
Domine, Manuel ;
Paz-Ares, Luis ;
Reck, Martin ;
Baudelet, Christine ;
Harbison, Christopher T. ;
Lestini, Brian ;
Spigel, David R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (02) :123-135
[6]   PD-L1 expression and tumor mutational burden status for prediction of response to chemotherapy and targeted therapy in non-small cell lung cancer [J].
Chen, Yanhui ;
Liu, Quanxing ;
Chen, Zhiming ;
Wang, Yating ;
Yang, Wanning ;
Hu, Ying ;
Han, Wenbo ;
Zeng, Hui ;
Ma, Haitao ;
Dai, Jigang ;
Zhang, Henghui .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2019, 38 (1)
[7]   New immunotherapies targeting the PD-1 pathway [J].
Chinai, Jordan M. ;
Janakiram, Murali ;
Chen, Fuxiang ;
Chen, Wantao ;
Kaplan, Mark ;
Zang, Xingxing .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2015, 36 (09) :587-595
[8]   Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma [J].
Choi, E-Ryung ;
Lee, Ho Yun ;
Jeong, Ji Yun ;
Choi, Yoon-La ;
Kim, Jhingook ;
Bae, Jungmin ;
Lee, Kyung Soo ;
Shim, Young Mog .
ONCOTARGET, 2016, 7 (41) :67302-67313
[9]   PDL1 Regulation by p53 via miR-34 [J].
Cortez, Maria Angelica ;
Ivan, Cristina ;
Valdecanas, David ;
Wang, Xiaohong ;
Peltier, Heidi J. ;
Ye, Yuping ;
Araujo, Luiz ;
Carbone, David P. ;
Shilo, Konstantin ;
Giri, Dipak K. ;
Kelnar, Kevin ;
Martin, Desiree ;
Komaki, Ritsuko ;
Gomez, Daniel R. ;
Krishnan, Sunil ;
Calin, George A. ;
Bader, Andreas G. ;
Welsh, James W. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2016, 108 (01)
[10]   Utility of PD-L1 immunohistochemistry assays for predicting PD-1/PD-L1 inhibitor response [J].
Diggs, Laurence P. ;
Hsueh, Eddy C. .
BIOMARKER RESEARCH, 2017, 5