Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cyclooxygenase-2 in hepatocellular carcinoma

被引:149
作者
Chen, Yan [1 ,2 ,3 ,4 ]
Chen, Hai-Ning [2 ,4 ,5 ]
Wang, Kui [1 ,2 ,3 ,4 ]
Zhang, Lu [1 ,2 ,3 ,4 ]
Huang, Zhao [1 ,2 ,3 ,4 ]
Liu, Jiayang [1 ,2 ,3 ,4 ]
Zhang, Zhe [1 ,2 ,3 ,4 ]
Luo, Maochao [1 ,2 ,3 ,4 ]
Lei, Yunlong [6 ,7 ]
Peng, Yong [1 ,2 ,3 ,4 ]
Zhou, Zong-Guang [2 ,4 ,5 ]
Wei, Yuquan [1 ,2 ,3 ,4 ]
Huang, Canhua [1 ,2 ,3 ,4 ]
机构
[1] Sichuan Univ, Dept Biotherapy, State Key Lab Biotherapy, Chengdu 610041, Sichuan, Peoples R China
[2] Sichuan Univ, Canc Ctr, West China Hosp, Chengdu 610041, Sichuan, Peoples R China
[3] Sichuan Univ, West China Sch Basic Med Sci & Forens Med, 17,Sect 3,South Renmin Rd, Chengdu 610041, Sichuan, Peoples R China
[4] Collaborat Innovat Ctr Biotherapy, Chengdu 610041, Sichuan, Peoples R China
[5] Sichuan Univ, West China Hosp, Dept Gastrointestinal Surg, State Key Lab Biotherapy, Chengdu 610041, Sichuan, Peoples R China
[6] Chongqing Med Univ, Dept Biochem & Mol Biol & Mol Med, Chongqing 400016, Peoples R China
[7] Chongqing Med Univ, Canc Res Ctr, Chongqing 400016, Peoples R China
基金
中国国家自然科学基金;
关键词
Ketoconazole; Mitophagy; Apoptosis; HCC; Cancer; Cyclooxygenase-2; Sorafenib; PROSTATE-CANCER; EXPRESSION; AUTOPHAGY; MECHANISMS; RESISTANCE; SORAFENIB; INHIBITOR; MITOCHONDRIA; GUIDELINES; TARGET;
D O I
10.1016/j.jhep.2018.09.022
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background & Aims: Hepatocellular carcinoma (HCC) is a common cancer worldwide and remains a major clinical challenge. Ketoconazole, a traditional antifungal agent, has attracted considerable attention as a therapeutic option for cancer treatment. However, its mechanism of action is still not clearly defined. We aimed to evaluate the effect of ketoconazole on HCC and investigate the underlying mechanisms. Methods: We examined the antitumor effect of ketoconazole on HCC cells, cell line-derived xenografts, and a patient-derived xenograft (PDX) model. Ketoconazole-induced mitophagy was quantified by immunofluorescence, immunoblotting and transmission electron microscopy analysis. We used mitophagy inhibitors to study the role of mitophagy on HCC cell death induced by ketoconazole. The role of cyclooxygenase-2 (COX-2 [encoded by PTGS2]) on ketoconazole-induced mitophagy was evaluated using gain- and loss-of-function methods. The synergistic effect of ketoconazole with sorafenib on HCC was measured in vivo and in vitro. Results: Ketoconazole stimulated apoptosis in HCC cells by triggering mitophagy in vitro and in vivo. Mechanistically, ketoconazole downregulated COX-2, which led to PINK1 accumulation and subsequent mitochondrial translocation of Parkin (PRKN), and thereby promoted mitophagy-mediated mitochondrial dysfunction. Inhibiting mitophagy alleviated ketoconazole-induced mitochondrial dysfunction and apoptosis, supporting a causal role for mitophagy in the antitumor effect of ketoconazole. In the HCC PDX model, ketoconazole demonstrated a marked antitumor effect characterized by COX-2 downregulation, mitophagy activation, and apoptosis induction. Moreover, ketoconazole acted synergistically with sorafenib to suppress HCC xenograft growth in vivo. Conclusion: Our results demonstrate a novel link between ketoconazole and mitophagy machinery, providing preclinical proof of concept for the use of ketoconazole in HCC treatment. Lay summary: Hepatocellular carcinoma (HCC) is a common malignancy worldwide and remains a major clinical challenge. Our study reveals that ketoconazole, a broad-spectrum antifungal agent, activates PINK1/Parkin-mediated mitophagy by downregulating COX-2, consequently resulting in the acceleration of apoptosis and thereby inhibiting the growth of HCC. Furthermore, ketoconazole acts synergistically with sorafenib in the suppression of HCC growth in vitro and in vivo. (C) 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 77
页数:12
相关论文
共 49 条
[1]   Recent insights into the function of autophagy in cancer [J].
Amaravadi, Ravi ;
Kimmelman, Alec C. ;
White, Eileen .
GENES & DEVELOPMENT, 2016, 30 (17) :1913-1930
[2]   The pathways of mitophagy for quality control and clearance of mitochondria [J].
Ashrafi, G. ;
Schwarz, T. L. .
CELL DEATH AND DIFFERENTIATION, 2013, 20 (01) :31-42
[3]  
Bae SH, 2001, CLIN CANCER RES, V7, P1410
[4]   Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells [J].
Basit, Farhan ;
van Oppen, Lisanne M. P. E. ;
Schoeckel, Laura ;
Bossenbroek, Hasse M. ;
van Emst-de Vries, Sjenet E. ;
Hermeling, Johannes C. W. ;
Grefte, Sander ;
Kopitz, Charlotte ;
Heroult, Melanie ;
Willems, Peter H. G. M. ;
Koopman, Werner J. H. .
CELL DEATH & DISEASE, 2017, 8 :e2716-e2716
[5]   Emerging regulation and functions of autophagy [J].
Boya, Patricia ;
Reggiori, Fulvio ;
Codogno, Patrice .
NATURE CELL BIOLOGY, 2013, 15 (07) :713-720
[6]   Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma [J].
Bruix, Jordi ;
Reig, Maria ;
Sherman, Morris .
GASTROENTEROLOGY, 2016, 150 (04) :835-853
[7]   Hepatocellular carcinoma: clinical frontiers and perspectives [J].
Bruix, Jordi ;
Gores, Gregory J. ;
Mazzaferro, Vincenzo .
GUT, 2014, 63 (05) :844-855
[8]   Targeting cyclooxygenase-2 in human neoplasia: Rationale and promise [J].
Dannenberg, AJ ;
Subbaramaiah, K .
CANCER CELL, 2003, 4 (06) :431-436
[9]   Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML [J].
Dany, Mohammed ;
Gencer, Salih ;
Nganga, Rose ;
Thomas, Raquela J. ;
Oleinik, Natalia ;
Baron, Kyla D. ;
Szulc, Zdzislaw M. ;
Ruvolo, Peter ;
Kornblau, Steven ;
Andreeff, Michael ;
Ogretmen, Besim .
BLOOD, 2016, 128 (15) :1944-1958
[10]   PINK1/Parkin-mediated mitophagy in mammalian cells [J].
Eiyama, Akinori ;
Okamoto, Koji .
CURRENT OPINION IN CELL BIOLOGY, 2015, 33 :95-101