Green's function of semi-infinite Weyl semimetals

被引:11
|
作者
Faraei, Z. [1 ]
Farajollahpour, T. [1 ]
Jafari, S. A. [1 ,2 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran 111559161, Iran
[2] Sharif Univ Technol, Ctr Excellence Complex Syst & Condensed Matter CS, Tehran 1458889694, Iran
关键词
SURFACE FERMI ARCS; DISCOVERY;
D O I
10.1103/PhysRevB.98.195402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We classify all possible boundary conditions (BCs) for a Weyl material into two classes: (i) BC that mixes the spin projection but does not change the chirality attribute, and (ii) BC that mixes the chiralities. All BCs are parametrized with angular variables that can be regarded as mixing angles between spins or chiralities. Using the Green's function method, we show that these two BCs faithfully reproduce the Fermi arcs. The parameters are ultimately fixed by the orientation of Fermi arcs. We build on our classification and show that in the presence of a background magnetic field, only the second-type BC gives rise to nontrivial Landau orbitals.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Green's function theory for infinite and semi-infinite particle chains
    Hadad, Y.
    Steinberg, Ben Z.
    PHYSICAL REVIEW B, 2011, 84 (12)
  • [2] Green's function calculations for semi-infinite carbon nanotubes
    John, DL
    Pulfrey, DL
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (02): : 442 - 448
  • [3] Lattice statics Green's function for a semi-infinite crystal
    Ohsawa, K
    Kuramoto, E
    Suzuki, T
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1996, 74 (02): : 431 - 449
  • [4] Comment on "Green's function theory for infinite and semi-infinite particle chains"
    Markel, Vadim A.
    Sarychev, Andrey K.
    PHYSICAL REVIEW B, 2012, 86 (03):
  • [5] On constructing a Green’s function for a semi-infinite beam with boundary damping
    Tugce Akkaya
    Wim T. van Horssen
    Meccanica, 2017, 52 : 2251 - 2263
  • [6] On constructing a Green's function for a semi-infinite beam with boundary damping
    Akkaya, Tugce
    van Horssen, Wim T.
    MECCANICA, 2017, 52 (10) : 2251 - 2263
  • [7] Reply to "Comment on 'Green's function theory for infinite and semi-infinite particle chains'"
    Hadad, Y.
    Steinberg, Ben Z.
    PHYSICAL REVIEW B, 2012, 86 (03):
  • [8] Green's function for T-stress of semi-infinite plane crack
    崔元庆
    杨卫
    仲政
    Applied Mathematics and Mechanics(English Edition), 2011, 32 (08) : 973 - 980
  • [9] Green's function for T-stress of semi-infinite plane crack
    Cui, Yuan-qing
    Yang, Wei
    Zhong, Zheng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2011, 32 (08) : 973 - 980
  • [10] Practical Green's function approach to the simulation of elastic semi-infinite solids
    Campana, Carlos
    Mueser, Martin H.
    PHYSICAL REVIEW B, 2006, 74 (07)