N-fold Darboux transformation and discrete soliton solutions for the discrete Hirota equation

被引:93
作者
Zhao, Xiao-Juan [1 ]
Guo, Rui [1 ]
Hao, Hui-Qin [1 ]
机构
[1] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金; 山西省青年科学基金;
关键词
A discrete Hirota equation; N-fold Darboux transformation; Explicit discrete solutions; NONLINEAR SCHRODINGER-EQUATION; LATTICE;
D O I
10.1016/j.aml.2017.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a discrete Hirota equation is analytically investigated. The N-fold Darboux transformation (DT) is constructed based on the Lax pair for the equation. In addition, the discrete N-soliton solutions under the vanishing background are derived. Especially, the dynamic features of one-soliton and two-soliton solutions are displayed through figures. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 120
页数:7
相关论文
共 11 条
[1]  
Ablowitz M. J., 2003, LOND MATH SOC LECT N, P46
[2]   Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions [J].
Guo, Rui ;
Zhao, Xiao-Juan .
NONLINEAR DYNAMICS, 2016, 84 (04) :1901-1907
[3]   Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear Schrodinger equation [J].
Hao, Hui-Qin ;
Guo, Rui ;
Zhang, Jian-Wen .
NONLINEAR DYNAMICS, 2017, 88 (03) :1615-1622
[4]   Application of Hirota's bilinear formalism to the Toeplitz lattice - some special soliton-like solutions [J].
Hu, XB ;
Ma, WX .
PHYSICS LETTERS A, 2002, 293 (3-4) :161-165
[5]   Rational Solitons in the Parity-Time-Symmetric Nonlocal Nonlinear Schrodinger Model [J].
Li, Min ;
Xu, Tao ;
Meng, Dexin .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (12)
[6]   Nonautonomous solitons and interactions for a variable-coefficient resonant nonlinear Schrodinger equation [J].
Li, Min ;
Xu, Tao ;
Wang, Lei ;
Qi, Feng-Hua .
APPLIED MATHEMATICS LETTERS, 2016, 60 :8-13
[7]   Dark and antidark soliton interactions in the nonlocal nonlinear Schrodinger equation with the self-induced parity-time-symmetric potential [J].
Li, Min ;
Xu, Tao .
PHYSICAL REVIEW E, 2015, 91 (03)
[8]   DISCRETIZED HIROTA EQUATION, EQUIVALENT SPIN CHAIN AND BACKLUND-TRANSFORMATIONS [J].
PORSEZIAN, K ;
LAKSHMANAN, M .
INVERSE PROBLEMS, 1989, 5 (02) :L15-L19
[9]   N-fold Darboux transformation and double-Wronskian-typed solitonic structures for a variable-coefficient modified Kortweg-de Vries equation [J].
Wang, Lei ;
Gao, Yi-Tian ;
Qi, Feng-Hua .
ANNALS OF PHYSICS, 2012, 327 (08) :1974-1988
[10]   N-FOLD DARBOUX TRANSFORMATION AND SOLITON SOLUTIONS FOR TODA LATTICE EQUATION [J].
Wen, Xiao-Yong .
REPORTS ON MATHEMATICAL PHYSICS, 2011, 68 (02) :211-223