Electron effective attenuation length in epitaxial graphene on SiC

被引:7
作者
Amjadipour, Mojtaba [1 ]
MacLeod, Jennifer [1 ]
Lipton-Duffin, Josh [2 ]
Tadich, Anton [3 ]
Boeckl, John J. [4 ]
Iacopi, Francesca [5 ]
Motta, Nunzio [1 ]
机构
[1] Queensland Univ Technol, Sci & Engn Fac, Sch Chem Phys & Mech Engn, Brisbane, Qld, Australia
[2] Queensland Univ Technol, Sci & Engn Fac, Inst Future Environm, Cent Analyt Res Facil, Brisbane, Qld, Australia
[3] Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
[4] Air Force Res Labs, Mat & Mfg Directorate, Dayton, OH 45433 USA
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Elect & Data Engn, Sydney, NSW, Australia
关键词
epitaxial graphene; inelastic mean free path (IMFP); photoelectron spectroscopy; effective attenuation length (EAL); MEAN FREE PATHS; 3C-SIC(111) THIN-FILM; 50-2000 EV RANGE; ELEMENTAL SOLIDS; ANNEALING TEMPERATURE; OPTICAL-CONSTANTS; SILICON-CARBIDE; SPECTROSCOPY; FABRICATION; SURFACES;
D O I
10.1088/1361-6528/aae7ec
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The inelastic mean free path (IMFP) for carbon-based materials is notoriously challenging to model, and moving from bulk materials to 2D materials may exacerbate this problem, making the accurate measurements of IMFP in 2D carbon materials critical. The overlayer-film method is a common experimental method to estimate IMFP by measuring electron effective attenuation length (EAL). This estimation relies on an assumption that elastic scattering effects are negligible. We report here an experimental measurement of electron EAL in epitaxial graphene on SiC using photoelectron spectroscopy over an electron kinetic energy range of 50-1150 eV. We find a significant effect of the interface between the 2D carbon material and the substrate, indicating that the attenuation length in the so-called 'buffer layer' is smaller than for free-standing graphene. Our results also suggest that the existing models for estimating IMFPs may not adequately capture the physics of electron interactions in 2D materials.
引用
收藏
页数:7
相关论文
共 56 条
[11]   Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers [J].
Cunning, Benjamin V. ;
Ahmed, Mohsin ;
Mishra, Neeraj ;
Kermany, Atieh Ranjbar ;
Wood, Barry ;
Iacopi, Francesca .
NANOTECHNOLOGY, 2014, 25 (32)
[12]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/NMAT2382, 10.1038/nmat2382]
[13]   Advances in the fabrication of graphene transistors on flexible substrates [J].
Fisichella, Gabriele ;
Lo Verso, Stella ;
Di Marco, Silvestra ;
Vinciguerra, Vincenzo ;
Schiliro, Emanuela ;
Di Franco, Salvatore ;
Lo Nigro, Raffaella ;
Roccaforte, Fabrizio ;
Zurutuza, Amaia ;
Centeno, Alba ;
Ravesi, Sebastiano ;
Giannazzo, Filippo .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 :467-474
[14]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[15]   Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial graphene [J].
Goler, Sarah ;
Coletti, Camilla ;
Piazza, Vincenzo ;
Pingue, Pasqualantonio ;
Colangelo, Francesco ;
Pellegrini, Vittorio ;
Emtsev, Konstantin V. ;
Forti, Stiven ;
Starke, Ulrich ;
Beltram, Fabio ;
Heun, Stefan .
CARBON, 2013, 51 :249-254
[16]   Effect of substrate polishing on the growth of graphene on 3C-SiC(111)/Si(111) by high temperature annealing [J].
Gupta, B. ;
Di Bernardo, I. ;
Mondelli, P. ;
Della Pia, A. ;
Betti, M. G. ;
Iacopi, F. ;
Mariani, C. ;
Motta, N. .
NANOTECHNOLOGY, 2016, 27 (18)
[17]   The transition from 3C SiC(111) to graphene captured by Ultra High Vacuum Scanning Tunneling Microscopy [J].
Gupta, B. ;
Placidi, E. ;
Hogan, C. ;
Mishra, N. ;
Iacopi, F. ;
Motta, N. .
CARBON, 2015, 91 :378-385
[18]   Evolution of epitaxial graphene layers on 3C SiC/Si (111) as a function of annealing temperature in UHV [J].
Gupta, B. ;
Notarianni, M. ;
Mishra, N. ;
Shafiei, M. ;
Iacopi, F. ;
Motta, N. .
CARBON, 2014, 68 :563-572
[19]  
HAGEMANN HJ, 1975, J OPT SOC AM, V65, P742, DOI 10.1364/JOSA.65.000742
[20]   PHOTOELECTRON DIFFRACTION IN MAGNETIC LINEAR DICHROISM [J].
HILLEBRECHT, FU ;
ROSE, HB ;
KINOSHITA, T ;
IDZERDA, YU ;
VANDERLAAN, G ;
DENECKE, R ;
LEY, L .
PHYSICAL REVIEW LETTERS, 1995, 75 (15) :2883-2886