Layered tile architecture for efficient hardware spiking neural networks

被引:5
作者
Wan, Lei [1 ]
Liu, Junxiu [1 ]
Harkin, Jim [2 ]
McDaid, Liam [2 ]
Luo, Yuling [1 ]
机构
[1] Guangxi Normal Univ, Fac Elect Engn, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
[2] Ulster Univ, Sch Comp & Intelligent Syst, Derry BT48 7JL, North Ireland
基金
中国国家自然科学基金;
关键词
Spiking neural networks; Layer-level tile architecture (LTA); FPGAs; Sharing mechanism; ADAPTIVE NETWORK; NEURONS; IMPLEMENTATIONS; SIMULATION; PLATFORM; ANALOG; MODEL;
D O I
10.1016/j.micpro.2017.07.005
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Spiking Neural Network (SNN) is the most recent computational model that can emulate the behaviour of biological neuron system. However, its main drawback is that it is computationally intensive, which limits the system scalability. This paper highlights and discusses the importance and significance of emulating SNNs in hardware devices. A layer-level tile architecture (LTA) is proposed for hardware-based SNNs. The LTA employs a two-level sharing mechanism of computing components at the synapse and neuron levels, and achieves a trade-off between computational complexity and hardware resource costs. The LTA is implemented on a Xilinx FPGA device. Experimental results demonstrate that this approach is capable of scaling to large hardware-based SNNs. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 60 条
[1]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[2]   FPGA implementation of biologically-inspired auto-associative memory [J].
Ang, C. H. ;
McEwan, A. L. ;
van Schaik, A. ;
Jin, C. ;
Leong, P. H. W. .
ELECTRONICS LETTERS, 2012, 48 (03) :145-U24
[3]  
[Anonymous], 2014, ser. FPGA .4.
[4]  
Arbib M.A., 1997, Neurocomputing, V16, P259, DOI [DOI 10.1016/S0925-2312(97)00036-2, 10.1016/S0925-2312, DOI 10.1016/S0925-2312, 10.1007/978-1-59745-520-6_8, DOI 10.1007/978-1-59745-520-6_8]
[5]   Silicon spiking neurons for hardware implementation of extreme learning machines [J].
Basu, Arindam ;
Shuo, Sun ;
Zhou, Hongming ;
Lim, Meng Hiot ;
Huang, Guang-Bin .
NEUROCOMPUTING, 2013, 102 :125-134
[6]   Neural Dynamics in Reconfigurable Silicon [J].
Basu, Arindam ;
Ramakrishnan, Shubha ;
Petre, Csaba ;
Koziol, Scott ;
Brink, Stephen ;
Hasler, Paul E. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2010, 4 (05) :311-319
[7]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[8]  
Beuler Marcel, 2012, Artificial Neural Networks and Machine Learning - ICANN 2012. Proceedings of the 22nd International Conference on Artificial Neural Networks, P97, DOI 10.1007/978-3-642-33269-2_13
[9]   Scalable Hierarchical Network-on-Chip Architecture for Spiking Neural Network Hardware Implementations [J].
Carrillo, Snaider ;
Harkin, Jim ;
McDaid, Liam J. ;
Morgan, Fearghal ;
Pande, Sandeep ;
Cawley, Seamus ;
McGinley, Brian .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013, 24 (12) :2451-2461
[10]   Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers [J].
Carrillo, Snaider ;
Harkin, Jim ;
McDaid, Liam ;
Pande, Sandeep ;
Cawley, Seamus ;
McGinley, Brian ;
Morgan, Fearghal .
NEURAL NETWORKS, 2012, 33 :42-57