Transfer to distant retrograde orbits using manifold theory

被引:40
作者
Demeyer, Jacob [1 ]
Gurfil, Pini
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Dept Astrodynam & Satellite Syst, NL-2629 HS Delft, Netherlands
[2] Technion Israel Inst Technol, IL-32000 Haifa, Israel
关键词
D O I
10.2514/1.24960
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The purpose of this work is to develop transfer trajectories from Earth to prespecified distant retrograde orbits in the sun-Earth planar circular restricted three-body problem by using orbits about the collinear equilibrium point L-1. More specifically, we examine whether it is possible to use the hyperbolic network associated with the horizontal Lyapunov orbits around L, to find transfer trajectories to a wide range of distant retrograde orbits that are more energy-efficient and/or time-efficient compared with standard impulsive maneuvers. We point out how to apply manifold theory in the transfer-trajectory design process and show that for a certain class of distant retrograde orbits, the dynamic systems approach reveals the availability of transfer trajectories having reduced energy requirements or considerably reduced transfer times.
引用
收藏
页码:1261 / 1267
页数:7
相关论文
共 17 条
[1]   Survey of numerical methods for trajectory optimization [J].
Betts, JT .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1998, 21 (02) :193-207
[2]   LOW ENERGY TRANSIT ORBITS IN RESTRICTED 3-BODY PROBLEM [J].
CONLEY, CC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (04) :732-&
[3]   Connecting orbits and invariant manifolds in the spatial restricted three-body problem [J].
Gómez, G ;
Koon, WS ;
Lo, WS ;
Marsden, JE ;
Masdemont, J ;
Ross, SD .
NONLINEARITY, 2004, 17 (05) :1571-1606
[4]   STUDY OF THE TRANSFER FROM THE EARTH TO A HALO ORBIT AROUND THE EQUILIBRIUM POINT L(1) [J].
Gomez, G. ;
Jorba, A. ;
Masdemont, J. ;
Simo, C. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 56 (04) :541-562
[5]  
GURL P, 2001, J ASTRONAUT SCI, V49, P509
[6]  
HENON M, 1969, ASTRON ASTROPHYS, V1, P223
[7]   Dynamics in the center manifold of the collinear points of the restricted three body problem [J].
Jorba, A ;
Masdemont, J .
PHYSICA D, 1999, 132 (1-2) :189-213
[8]   Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics [J].
Koon, WS ;
Lo, MW ;
Marsden, JE ;
Ross, SD .
CHAOS, 2000, 10 (02) :427-469
[9]  
Koon WS., 2001, Contemp. Math, V292, P129, DOI [DOI 10.1090/CONM/292, 10.1090/conm/292/04919, DOI 10.1090/CONM/292/04919]
[10]  
OCAMPO C, 1996, THESIS U COLORODO BO, P47