Solid-Liquid State Transformable Magnetorheological Millirobot

被引:39
作者
Chen, Zhipeng [1 ]
Lu, Weibin [1 ]
Li, Yuanyuan [1 ]
Liu, Pengfei [1 ]
Yang, Yawen [1 ]
Jiang, Lelun [1 ]
机构
[1] Sun Yat Sen Univ, Sch Biomed Engn, Guangdong Prov Key Lab Sensor Technol & Biomed In, Shenzhen Campus, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
millirobot; magnetic fi elds; magnetorheological f l uid; solid; liquid state transformation; magnetic actuation; MAGNETOACTIVE SOFT MATERIALS; ROBOT; FLOW;
D O I
10.1021/acsami.2c05251
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetically actuated soft millirobots (magnetorobot) capable of accomplishing on-demand tasks in a remotecontrol manner using noninvasive magnetic fields are of great interest in biomedical settings. However, the solid magneto-robots are usually restricted by the limited deformability due to the predesigned shape, while the liquid magneto-robots are capable of in situ shape reconfiguration but limited by the low stiffness and geometric instability due to the fluidity. Herein, we propose a magneto-active solid-liquid state transformable millirobot (named MRF-Robot) made from a magnetorheological fluid (MRF). The MRF-Robot can transform freely and rapidly between the Newtonian fluid in the liquid state upon a weak magnetic field (similar to 0 mT) and the Bingham plasticity in the solid state upon a strong magnetic field (similar to 100 mT). The MRF-Robot in the liquid state can realize diverse behaviors of large deformation, smooth navigation, in situ splitting, merging, and gradient pulling actuated by a weak magnetic field with a high gradient. The MRF-Robot in the solid state is distinguished for the controllable locomotion with reconfigured shapes and versatile object manipulations (including pull, push, and rotate the objects) driven by a strong magnetic field with a high gradient. Moreover, the MRF-Robot could continuously maneuver to accomplish diverse tasks in the comprehensive scenes and achieve liquid-drug delivery, thrombus clearance, and fluid-flow blockage in the phantom vascular model under magnetic actuation.
引用
收藏
页码:30007 / 30020
页数:14
相关论文
共 54 条
[1]   A Shapeshifting Ferrofluidic Robot [J].
Ahmed, Reza ;
Ilami, Mahdi ;
Bant, Joseph ;
Beigzadeh, Borhan ;
Marvi, Hamid .
SOFT ROBOTICS, 2021, 8 (06) :687-698
[2]   Characteristics of Magnetorheological Fluids Applied to Prosthesis for Lower Limbs [J].
Arteaga, Oscar ;
Erazo, Maria I. ;
Teran, Hector C. ;
Camacho, Diego ;
Velasco, Alvaro ;
Mera, Erick ;
Mounir Bou-Ali, M. ;
Berasategi, Joanes .
ADVANCED SCIENCE LETTERS, 2018, 24 (11) :8748-8752
[3]   Shock, Thrombus, TAVR: A Challenging TAVR With Large Left-Ventricular Thrombus [J].
Blusztein, David ;
Teng, Peter ;
Deuse, Tobias ;
Mahadevan, Vaikom S. .
CANADIAN JOURNAL OF CARDIOLOGY, 2021, 37 (10) :1668-1670
[4]   REMARKS ON ZWANZIGER LOCAL QUANTUM FIELD-THEORY OF ELECTRIC AND MAGNETIC CHARGE [J].
BRANDT, RA ;
NERI, F .
PHYSICAL REVIEW D, 1978, 18 (06) :2080-2090
[5]   Deformable ferrofluid-based millirobot with high motion accuracy and high output force [J].
Chen, Dixiao ;
Yang, Ziping ;
Ji, Yiming ;
Dai, Yuguo ;
Feng, Lin ;
Arai, Fumihito .
APPLIED PHYSICS LETTERS, 2021, 118 (13)
[6]   Programmable Transformation and Controllable Locomotion of Magnetoactive Soft Materials with 3D-Patterned Magnetization [J].
Chen, Zhipeng ;
Lin, Yinyan ;
Zheng, Guizhou ;
Yang, Yawen ;
Zhang, Yuanxi ;
Zheng, Siqi ;
Li, Jingwei ;
Li, Jiwei ;
Ren, Lei ;
Jiang, Lelun .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (52) :58179-58190
[7]   Nanomagnetic encoding of shape-morphing micromachines [J].
Cui, Jizhai ;
Huang, Tian-Yun ;
Luo, Zhaochu ;
Testa, Paolo ;
Gu, Hongri ;
Chen, Xiang-Zhong ;
Nelson, Bradley J. ;
Heyderman, Laura J. .
NATURE, 2019, 575 (7781) :164-+
[8]   Magnetorheological fluids: a review [J].
de Vicente, Juan ;
Klingenberg, Daniel J. ;
Hidalgo-Alvarez, Roque .
SOFT MATTER, 2011, 7 (08) :3701-3710
[9]   Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers [J].
Diller, Eric ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (28) :4397-4404
[10]   COMMENCEMENT OF FLOW OF A BINGHAM PLASTIC FLUID [J].
DUGGINS, RK .
CHEMICAL ENGINEERING SCIENCE, 1972, 27 (11) :1991-&