The role of computational results databases in accelerating the discovery of catalysts

被引:60
作者
Bo, Carles [1 ,2 ]
Maseras, Feliu [1 ,3 ]
Lopez, Nuria [1 ]
机构
[1] Barcelona Inst Sci & Technol, Inst Chem Res Catalonia, Tarragona, Spain
[2] Univ Rovira & Virgili, Dept Quim Fis & Inorgan, Tarragona, Spain
[3] Univ Autonoma Barcelona, Dept Quim, Bellaterra, Spain
来源
NATURE CATALYSIS | 2018年 / 1卷 / 11期
关键词
NEURAL-NETWORKS; DATA FORMATS; CHEMISTRY; SCIENCE; PLATFORM; WEB;
D O I
10.1038/s41929-018-0176-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Databases of computational results hold high promise for accelerating catalysis research. Still, many challenges remain and consensus on facets such as metadata, reliability and curation is crucial to transform the hype into an attractive technology.
引用
收藏
页码:809 / 810
页数:2
相关论文
共 32 条
  • [1] The Quixote project: Collaborative and Open Quantum Chemistry data management in the Internet age
    Adams, Sam
    de Castro, Pablo
    Echenique, Pablo
    Estrada, Jorge
    Hanwell, Marcus D.
    Murray-Rust, Peter
    Sherwood, Paul
    Thomas, Jens
    Townsend, Joe
    [J]. JOURNAL OF CHEMINFORMATICS, 2011, 3
  • [2] Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform
    Alvarez-Moreno, M.
    de Graaf, C.
    Lopez, N.
    Maseras, F.
    Poblet, J. M.
    Bo, C.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (01) : 95 - 103
  • [3] [Anonymous], QCLDB II
  • [4] [Anonymous], NOMAD REPOSITORY
  • [5] [Anonymous], 2018, MARVEL
  • [6] Machine learning for molecular and materials science
    Butler, Keith T.
    Davies, Daniel W.
    Cartwright, Hugh
    Isayev, Olexandr
    Walsh, Aron
    [J]. NATURE, 2018, 559 (7715) : 547 - 555
  • [7] A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling
    Chen, Zupeng
    Vorobyeva, Evgeniya
    Mitchell, Sharon
    Fako, Edvin
    Ortuno, Manuel A.
    Lopez, Nuria
    Collins, Sean M.
    Midgley, Paul A.
    Richard, Sylvia
    Vile, Gianvito
    Perez-Ramirez, Javier
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (08) : 702 - +
  • [8] de Bass A. F, 2017, WHAT MAKES MAT FUNCT
  • [9] ACS Central Science Virtual Issue on Machine Learning
    Ferguson, Andrew L.
    [J]. ACS CENTRAL SCIENCE, 2018, 4 (08) : 938 - 941
  • [10] The Alexandria library, a quantum-chemical database of molecular properties for force field development
    Ghahremanpour, Mohammad M.
    van Maaren, Paul J.
    van der Spoel, David
    [J]. SCIENTIFIC DATA, 2018, 5