A NEW DYNAMICAL APPROACH OF EMDEN-FOWLER EQUATIONS AND SYSTEMS

被引:0
作者
Bidaut-Veron, Marie Francoise [1 ]
Gacomini, Hector [1 ]
机构
[1] Fac Sci, Lab Math & Phys Theor, CNRS UMR 6083, F-37200 Tours, France
关键词
COOPERATIVE ELLIPTIC-SYSTEMS; REACTION-DIFFUSION SYSTEM; POSITIVE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; MOVING SPHERES; EXISTENCE; NONEXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a new approach to general Emden-Fowler equations and systems of the form (E-epsilon)-Delta(p)u=-div(vertical bar del u vertical bar(p-2)del(u))=epsilon vertical bar x vertical bar(a)u(Q), (G){-Delta(p)u=-div(vertical bar del u vertical bar(p-2)del(u))=epsilon(1)vertical bar x vertical bar(a)u(s)v(delta), -Delta(p)u=-div(vertical bar del u vertical bar(p-2)del(u))=epsilon(2)vertical bar x vertical bar(a)u(mu)v(m), where p,q,Q,delta,mu,s,m,a,b are real parameters, p, q not equal 1, and epsilon,epsilon(1),epsilon(2) = +/-1. In the radial case we reduce the problem (G) to a quadratic system of four coupled first-order autonomous equations of Kolmogorov type. In the scalar case the two equations (E-epsilon) with source (epsilon = 1) or absorption (E = 1) are reduced to a unique system of order 2. The reduction of system (G) allows us to obtain new local and global existence or nonexistence results. We consider in particular the case epsilon(1) = epsilon(2) = 1. We describe the behaviour of the ground states when the system is variational. We give a result of existence of ground states for a nonvariational system with p = q = 2 and 8 = m > 0, that improves the former ones. It is obtained by introducing a new type of energy function. In the non-radial case we solve a conjecture of nonexistence of ground states for the system with p = q = 2, delta = m + 1 and mu = s + 1.
引用
收藏
页码:1033 / 1082
页数:50
相关论文
共 43 条
[1]  
[Anonymous], 1996, Differ. Integral Equ.
[2]  
[Anonymous], 1931, Q. J. Math, DOI [10.1093/qmath/os-2.1.259, DOI 10.1093/QMATH/OS-2.1.259]
[3]  
[Anonymous], REV MAT U COMPUT MAD
[4]   Existence and a priori estimates for positive solutions of p-Laplace systems [J].
Azizieh, U ;
Clément, P ;
Mitidieri, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :422-442
[5]  
Bidaut-Veron M., 1999, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, Serie 4, V28, P229
[6]  
Bidaut-Veron M.-F., 2000, ADV DIFFERENTIAL EQU, V5, P147
[7]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[8]  
Bidaut-Véron MF, 1999, ASYMPTOTIC ANAL, V19, P117
[10]  
BidautVeron MF, 1996, COMMUN PART DIFF EQ, V21, P1035