New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators

被引:37
|
作者
Zhou, Shuang-Shuang [1 ]
Rashid, Saima [2 ]
Parveen, Saima [2 ]
Akdemir, Ahmet Ocak [3 ]
Hammouch, Zakia [4 ]
机构
[1] Hunan City Univ, Sch Sci, Yiyang 413000, Peoples R China
[2] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[3] Ibrahim Cecen Univ Agri, Dept Math, Agri, Turkey
[4] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 05期
关键词
integral inequality; Lambda-generalized proportional fractional integral; Cebysev inequality; Polya-Szego inequality; UNIFIED BOUNDS; INEQUALITIES; DERIVATIVES; CAPUTO;
D O I
10.3934/math.2021267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a new strategy to derive inequalities by employing newly proposed fractional operators, known as a Hilfer generalized proportional fractional integral operator (G (PFI) over capO). The presented work establishes a relationship between weighted extended Cebysev version and Polya-Szego type inequalities, which can be directly used in fractional differential equations and statistical theory. In addition, the proposed technique is also compared with the existing results. This work is important and timely for evaluating fractional operators and predicting the production of numerous real-world problems in varying nature.
引用
收藏
页码:4507 / 4525
页数:19
相关论文
共 50 条
  • [21] INEQUALITIES OF CHEBYSHEV-POLYA-SZEGO TYPE VIA GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Ekinci, Alper
    Nadeem, Muhammad
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 717 - 732
  • [22] Weighted estimates for bilinear fractional integral operators
    Komori-Furuya, Yasuo
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (08) : 1751 - 1762
  • [23] Nonlocal Boundary Value Problems for Hilfer Generalized Proportional Fractional Differential Equations
    Tariboon, Jessada
    Samadi, Ayub
    Ntouyas, Sotiris K.
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [24] SOME NEW ESTIMATES FOR EXPONENTIALLY (h;m)-CONVEX FUNCTIONS VIA EXTENDED GENERALIZED FRACTIONAL INTEGRAL OPERATORS
    Rashid, Saima
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (04): : 843 - 860
  • [25] Generalized proportional fractional integral inequalities for convex functions
    Neamah, Majid K.
    Ibrahim, Alawiah
    AIMS MATHEMATICS, 2021, 6 (10): : 10765 - 10777
  • [26] On Fractional Inequalities Using Generalized Proportional Hadamard Fractional Integral Operator
    Chinchane, Vaijanath L.
    Nale, Asha B.
    Panchal, Satish K.
    Chesneau, Christophe
    Khandagale, Amol D.
    AXIOMS, 2022, 11 (06)
  • [27] On an integral and consequent fractional integral operators via generalized convexity
    He, Wenfeng
    Farid, Ghulam
    Mahreen, Kahkashan
    Zahra, Moquddsa
    Chen, Nana
    AIMS MATHEMATICS, 2020, 5 (06): : 7632 - 7648
  • [28] Certain new weighted estimates proposing generalized proportional fractional operator in another sense
    Thabet Abdeljawad
    Saima Rashid
    A. A. El-Deeb
    Zakia Hammouch
    Yu-Ming Chu
    Advances in Difference Equations, 2020
  • [29] New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral
    Mumcu, Ilker
    Set, Erhan
    Akdemir, Ahmet Ocak
    Jarad, Fahd
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (02)
  • [30] Weighted Estimates for Bilinear Fractional Integral Operators and their Commutators
    Cong Hoang
    Moen, Kabe
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (01) : 397 - 428