Multi-objective optimization on multi-layer configuration of cathode electrode for polymer electrolyte fuel cells via computational-intelligence-aided design and engineering framework

被引:13
作者
Chen, Yi [1 ,2 ]
Peng, Bei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mechatron Engn, Chengdu 611731, Peoples R China
[2] Glasgow Caledonian Univ, Sch Engn & Built Environm, Glasgow G4 0BA, Lanark, Scotland
基金
中国国家自然科学基金;
关键词
Fuel cell; Cathode electrode; CIAD; CIAE; Swarm dolphin algorithm; PARAMETER SENSITIVITY EXAMINATION; CATALYST LAYER; PERFORMANCE; VALIDATION; SIMULATION; MODEL; PREDICTION;
D O I
10.1016/j.asoc.2016.02.045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Polymer electrolyte fuel cells (PEFCs) have attracted considerable interest within the research community due to the increasing demands for renewable energy. Within the PEFCs' many components, a cathode electrode plays a primary function in the operation of the cell. Here, a computational-intelligence-aided design and engineering (CIAD/CIAE) framework with potential cross-disciplinary applications is proposed to minimize the over-potential difference eta and improve the overall efficiency of PEFCs. A newly developed swarm dolphin algorithm is embedded in a computational-intelligence-integrated solver to optimize a triple-layer cathode electrode model. The simulation results demonstrate the potential application of the proposed CIAD/CIAE framework in the design automation and optimization of PEFCs. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:357 / 371
页数:15
相关论文
共 46 条
[1]   Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling [J].
Abdollahzadeh, M. ;
Pascoa, J. C. ;
Ranjbar, A. A. ;
Esmaili, Q. .
ENERGY, 2014, 68 :478-494
[2]  
Chen Y, 2014, SWARMDOLPHIN SWARM D
[3]  
Chen Y., 2012, SECFLAB SIMPLE ECONO
[4]  
Chen Y., 2011, J APPL PHYS, V110
[5]  
Chen Y, 2012, 2012 P 58 ANN REL MA
[6]   Determination of Optimal Parameters for Dual-Layer Cathode of Polymer Electrolyte Fuel Cell Using Computational Intelligence-Aided Design [J].
Chen, Yi ;
Huang, Weina ;
Peng, Bei .
PLOS ONE, 2014, 9 (12)
[7]   Fast approach of Pareto-optimal solution recommendation to multi-objective optimal design of serpentine-channel heat sink [J].
Chen, Yi ;
Peng, Bei ;
Hao, Xiaohong ;
Xie, Gongnan .
APPLIED THERMAL ENGINEERING, 2014, 70 (01) :263-273
[8]   Quantitative modelling of electricity consumption using computational intelligence aided design [J].
Chen, Yi ;
Zhang, Guangfeng ;
Jin, Tongdan ;
Wu, Shaomin ;
Peng, Bei .
JOURNAL OF CLEANER PRODUCTION, 2014, 69 :143-152
[9]   Quantitative Analysis of Lithium-Ion Battery Capacity Prediction via Adaptive Bathtub-Shaped Function [J].
Chen, Yi ;
Miao, Qiang ;
Zheng, Bin ;
Wu, Shaomin ;
Pecht, Michael .
ENERGIES, 2013, 6 (06) :3082-3096
[10]   Exchange rates determination based on genetic algorithms using Mendel's principles: Investigation and estimation under uncertainty [J].
Chen, Yi ;
Zhang, Guangfeng .
INFORMATION FUSION, 2013, 14 (03) :327-333