Multivariate Exponentially Weighted Moving-Average Chart for Monitoring Poisson Observations

被引:18
作者
Chen, Nan [1 ]
Li, Zhonghua [2 ]
Ou, Yanjing [3 ]
机构
[1] Natl Univ Singapore, Dept Ind & Syst Engn, Singapore 117548, Singapore
[2] Nankai Univ, Tianjin 300071, Peoples R China
[3] Singapore Inst Mfg Technol, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Count Data; Individual Observation; Multivariate Poisson; Statistical Process Control; STATISTICAL PROCESS-CONTROL; VARIABLE SAMPLING INTERVALS; EWMA CONTROL CHARTS; COUNT DATA; CUSUM; VARIANCE; REGRESSION; MODEL; SIZE; SPC;
D O I
10.1080/00224065.2015.11918131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In many practical situations, multiple variables often need to be monitored simultaneously to ensure the process is in control. In this article, we develop a feasible multivariate monitoring procedure based on the general multivariate exponentially weighted moving average (MEWMA) to monitor the multivariate count data. The multivariate count data is modeled using Poisson log-normal distribution to characterize their interrelations. We systematically investigate the effects of different charting parameters and propose an optimization procedure to identify the optimal charting parameters. In particular, we provide a design table to the quality engineers as a simple tool to design the optimal MEWMA chart. To further improve the efficiency, we integrate the variable sampling intervals (VSI) in the monitoring scheme. We use simulation studies and an example to elicit the application of the proposed scheme. The results are encouraging and demonstrate effectiveness of the proposed methods well.
引用
收藏
页码:252 / 263
页数:12
相关论文
共 42 条
[1]  
AITCHISON J, 1989, BIOMETRIKA, V76, P643
[2]  
Arnold JC, 2001, J QUAL TECHNOL, V33, P66
[3]   A bivariate Poisson count data model using conditional probabilities [J].
Berkhout, P ;
Plug, E .
STATISTICA NEERLANDICA, 2004, 58 (03) :349-364
[4]   Multivariate statistical process control charts: An overview [J].
Bersimis, S. ;
Psarakis, S. ;
Panaretos, J. .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2007, 23 (05) :517-543
[5]   A multivariate Poisson mixture model for marketing applications [J].
Brijs, T ;
Karlis, D ;
Swinnen, G ;
Vanhoof, K ;
Wets, G ;
Manchanda, P .
STATISTICA NEERLANDICA, 2004, 58 (03) :322-348
[6]   Markov chain Monte Carlo analysis of correlated count data [J].
Chib, S ;
Winkelmann, R .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2001, 19 (04) :428-435
[7]   A New Adaptive CUSUM Control Chart for Detecting the Multivariate Process Mean [J].
Dai, Yi ;
Luo, Yunzhao ;
Li, Zhonghua ;
Wang, Zhaojun .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2011, 27 (07) :877-884
[8]   DOUBLE SAMPLING (X)BAR CHARTS [J].
DAUDIN, JJ .
JOURNAL OF QUALITY TECHNOLOGY, 1992, 24 (02) :78-87
[9]   THE RUN-LENGTH DISTRIBUTION OF A CUMULATIVE SUM CONTROL CHART [J].
GAN, FF .
JOURNAL OF QUALITY TECHNOLOGY, 1993, 25 (03) :205-215
[10]   A general Multivariate exponentially weighted moving-average control chart [J].
Hawkins, Douglas M. ;
Choi, Sungwoon ;
Lee, Sanghoon .
JOURNAL OF QUALITY TECHNOLOGY, 2007, 39 (02) :118-125