The Mediator Complex in Plants: Structure, Phylogeny, and Expression Profiling of Representative Genes in a Dicot (Arabidopsis) and a Monocot (Rice) during Reproduction and Abiotic Stress

被引:140
作者
Mathur, Saloni
Vyas, Shailendra
Kapoor, Sanjay
Tyagi, Akhilesh Kumar
机构
[1] Univ Delhi, Interdisciplinary Ctr Plant Genom, New Delhi 110021, India
[2] Univ Delhi, Dept Plant Mol Biol, New Delhi 110021, India
关键词
RNA-POLYMERASE-II; MULTIPLE SEQUENCE ALIGNMENT; GENOME-WIDE IDENTIFICATION; YEAST MEDIATOR; TRANSCRIPTIONAL ACTIVATION; MAMMALIAN MEDIATOR; COACTIVATOR COMPLEX; IN-VIVO; DOMAIN; SUBUNIT;
D O I
10.1104/pp.111.188300
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Mediator (Med) complex relays regulatory information from DNA-bound transcription factors to the RNA polymerase II in eukaryotes. This macromolecular unit is composed of three core subcomplexes in addition to a separable kinase module. In this study, conservation of Meds has been investigated in 16 plant species representing seven diverse groups across the plant kingdom. Using Hidden Markov Model-based conserved motif searches, we have identified all the known yeast/metazoan Med components in one or more plant groups, including the Med26 subunits, which have not been reported so far for any plant species. We also detected orthologs for the Arabidopsis (Arabidopsis thaliana) Med32, -33, -34, -35, -36, and -37 in all the plant groups, and in silico analysis identified the Med32 and Med33 subunits as apparent orthologs of yeast/metazoan Med2/29 and Med5/24, respectively. Consequently, the plant Med complex appears to be composed of one or more members of 34 subunits, as opposed to 25 and 30 members in yeast and metazoans, respectively. Despite low similarity in primary Med sequences between the plants and their fungal/metazoan partners, secondary structure modeling of these proteins revealed a remarkable similarity between them, supporting the conservation of Med organization across kingdoms. Phylogenetic analysis between plant, human, and yeast revealed single clade relatedness for 29 Med genes families in plants, plant Meds being closer to human than to yeast counterparts. Expression profiling of rice (Oryza sativa) and Arabidopsis Med genes reveals that Meds not only act as a basal regulator of gene expression but may also have specific roles in plant development and under abiotic stress conditions.
引用
收藏
页码:1609 / 1627
页数:19
相关论文
共 106 条
[11]   Drought and salt tolerance in plants [J].
Bartels, D ;
Sunkar, R .
CRITICAL REVIEWS IN PLANT SCIENCES, 2005, 24 (01) :23-58
[12]  
Björklund S, 2001, MOL CELLS, V11, P129
[13]   The yeast Mediator complex and its regulation [J].
Björklund, S ;
Gustafsson, CM .
TRENDS IN BIOCHEMICAL SCIENCES, 2005, 30 (05) :240-244
[14]   MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction [J].
Blum, Torsten ;
Briesemeister, Sebastian ;
Kohlbacher, Oliver .
BMC BIOINFORMATICS, 2009, 10 :274
[15]   The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J].
Boeckmann, B ;
Bairoch, A ;
Apweiler, R ;
Blatter, MC ;
Estreicher, A ;
Gasteiger, E ;
Martin, MJ ;
Michoud, K ;
O'Donovan, C ;
Phan, I ;
Pilbout, S ;
Schneider, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :365-370
[16]   RNA Polymerase II C-terminal Heptarepeat Domain Ser-7 Phosphorylation Is Established in a Mediator-dependent Fashion [J].
Boeing, Stefan ;
Rigault, Caroline ;
Heidemann, Martin ;
Eick, Dirk ;
Meisterernst, Michael .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (01) :188-196
[17]   Structure of a conserved domain common to the transcription factors TFIIS, elongin A, and CRSP70 [J].
Booth, V ;
Koth, CM ;
Edwards, AM ;
Arrowsmith, CH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (40) :31266-31268
[18]   Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex [J].
Bourbon, Henri-Marc .
NUCLEIC ACIDS RESEARCH, 2008, 36 (12) :3993-4008
[19]   A unified nomenclature for protein subunits of Mediator complexes linking transcriptional regulators to RNA polymerase II [J].
Bourbon, HM ;
Aguilera, A ;
Ansari, AZ ;
Asturias, FJ ;
Berk, AJ ;
Bjorklund, S ;
Blackwell, TK ;
Borggrefe, T ;
Carey, M ;
Carlson, M ;
Conaway, JW ;
Conaway, RC ;
Emmons, SW ;
Fondell, JD ;
Freedman, LP ;
Fukasawa, T ;
Gustafsson, CM ;
Han, M ;
He, X ;
Herman, PK ;
Hinnebusch, AG ;
Holmberg, S ;
Holstege, FC ;
Jaehning, JA ;
Kim, YJ ;
Kuras, L ;
Leutz, A ;
Lis, JT ;
Meisterernest, M ;
Naar, AM ;
Nasmyth, K ;
Parvin, JD ;
Ptashne, M ;
Reinberg, D ;
Ronne, H ;
Sadowski, I ;
Sakurai, H ;
Sipiczki, M ;
Sternberg, PW ;
Stillman, DJ ;
Strich, R ;
Struhl, K ;
Svejstrup, JQ ;
Tuck, S ;
Winston, F ;
Roeder, RG ;
Kornberg, RD .
MOLECULAR CELL, 2004, 14 (05) :553-557
[20]   Protein structure prediction servers at university college london [J].
Bryson, K ;
McGuffin, LJ ;
Marsden, RL ;
Ward, JJ ;
Sodhi, JS ;
Jones, DT .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W36-W38