Finite ramification for preimage fields of post-critically finite morphisms

被引:9
作者
Bridy, Andrew [1 ]
Ingram, Patrick [2 ]
Jones, Rafe [3 ]
Juul, Jamie [4 ]
Levy, Alon [5 ]
Manes, Michelle [6 ]
Rubinstein-Salzedo, Simon [7 ]
Silverman, Joseph H. [8 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON, Canada
[3] Carleton Coll, Dept Math & Stat, 1 North Coll St, Northfield, MN 55057 USA
[4] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
[5] KTH, Dept Mth, Lindstedtsvagen 25, SE-10044 Stockholm, Sweden
[6] Univ Hawaii Manoa, Dept Math, 2565 McCarthy Mall,Keller 401A, Honolulu, HI 96822 USA
[7] Euler Circle, Palo Alto, CA 94306 USA
[8] Brown Univ, Math Dept, 151 Thayer St Box 1917, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
BRANCHED-COVERINGS; EXTENSIONS; POINTS; CURVES; MODULI;
D O I
10.4310/MRL.2017.v24.n6.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite endomorphism phi of a variety X defined over the field of fractions K of a Dedekind domain, we study the extension K (phi(-infinity)(alpha)) := boolean OR(n >= 1) K (phi(-n) (alpha)) generated by the preimages of alpha under all iterates of phi. In particular when phi is post-critically finite, i.e., there exists a non-empty, Zariski-open W subset of X such that phi(-1) (W) subset of W and phi : W -> X is etale, we prove that K (phi(-infinity) (alpha)) is rami fied over only finitely many primes of K. This provides a large supply of in finite extensions with restricted rami fication, and generalizes results of Aitken-Hajir-Maire [1] in the case X = A(1) and Cullinan-Hajir, Jones-Manes [7, 13] in the case X = P-1. Moreover, we conjecture that this finite rami fication condition characterizes post-critically finite morphisms, and we give an entirely new result showing this for X = P-1. The proof relies on Faltings' theorem and a local argument.
引用
收藏
页码:1633 / 1647
页数:15
相关论文
共 18 条
[11]   HURWITZ SCHEMES AND IRREDUCIBILITY OF MODULI OF ALGEBRAIC CURVES [J].
FULTON, W .
ANNALS OF MATHEMATICS, 1969, 90 (03) :542-&
[12]  
Hartshorne R., 1977, Graduate Texts in Mathematics, V52
[13]   Galois theory of quadratic rational functions [J].
Jones, Rafe ;
Manes, Michelle .
COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (01) :173-213
[14]  
Levy A., PCF ALL WAY UNPUB
[15]   Tropical analytic geometry, Newton polygons, and tropical intersections [J].
Rabinoff, Joseph .
ADVANCES IN MATHEMATICS, 2012, 229 (06) :3192-3255
[16]   INTEGER POINTS, DIOPHANTINE APPROXIMATION, AND ITERATION OF RATIONAL MAPS [J].
SILVERMAN, JH .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (03) :793-829
[17]   Good reduction of certain covers P1→P1 [J].
Zannier, U .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 124 (1) :93-114
[18]  
[No title captured]