Finite ramification for preimage fields of post-critically finite morphisms

被引:9
作者
Bridy, Andrew [1 ]
Ingram, Patrick [2 ]
Jones, Rafe [3 ]
Juul, Jamie [4 ]
Levy, Alon [5 ]
Manes, Michelle [6 ]
Rubinstein-Salzedo, Simon [7 ]
Silverman, Joseph H. [8 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON, Canada
[3] Carleton Coll, Dept Math & Stat, 1 North Coll St, Northfield, MN 55057 USA
[4] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
[5] KTH, Dept Mth, Lindstedtsvagen 25, SE-10044 Stockholm, Sweden
[6] Univ Hawaii Manoa, Dept Math, 2565 McCarthy Mall,Keller 401A, Honolulu, HI 96822 USA
[7] Euler Circle, Palo Alto, CA 94306 USA
[8] Brown Univ, Math Dept, 151 Thayer St Box 1917, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
BRANCHED-COVERINGS; EXTENSIONS; POINTS; CURVES; MODULI;
D O I
10.4310/MRL.2017.v24.n6.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite endomorphism phi of a variety X defined over the field of fractions K of a Dedekind domain, we study the extension K (phi(-infinity)(alpha)) := boolean OR(n >= 1) K (phi(-n) (alpha)) generated by the preimages of alpha under all iterates of phi. In particular when phi is post-critically finite, i.e., there exists a non-empty, Zariski-open W subset of X such that phi(-1) (W) subset of W and phi : W -> X is etale, we prove that K (phi(-infinity) (alpha)) is rami fied over only finitely many primes of K. This provides a large supply of in finite extensions with restricted rami fication, and generalizes results of Aitken-Hajir-Maire [1] in the case X = A(1) and Cullinan-Hajir, Jones-Manes [7, 13] in the case X = P-1. Moreover, we conjecture that this finite rami fication condition characterizes post-critically finite morphisms, and we give an entirely new result showing this for X = P-1. The proof relies on Faltings' theorem and a local argument.
引用
收藏
页码:1633 / 1647
页数:15
相关论文
共 18 条
[1]  
Aitken W, 2005, INT MATH RES NOTICES, V2005, P855
[2]  
BECKMANN S, 1991, J REINE ANGEW MATH, V419, P27
[3]   RAMIFIED PRIMES IN THE FIELD OF MODULI OF BRANCHED-COVERINGS OF CURVES [J].
BECKMANN, S .
JOURNAL OF ALGEBRA, 1989, 125 (01) :236-255
[4]   Arboreal Galois representations [J].
Boston, Nigel ;
Jones, Rafe .
GEOMETRIAE DEDICATA, 2007, 124 (01) :27-35
[5]  
Boston N, 2009, PURE APPL MATH Q, V5, P213
[6]   On integral points on surfaces [J].
Corvaja, P ;
Zannier, U .
ANNALS OF MATHEMATICS, 2004, 160 (02) :705-726
[7]   Ramification in iterated towers for rational functions [J].
Cullinan, John ;
Hajir, Farshid .
MANUSCRIPTA MATHEMATICA, 2012, 137 (3-4) :273-286
[8]   ON THE EQUATIONS Z(M)=F(X,Y) AND AX(P)+BY(Q)=CZ(R) [J].
DARMON, H ;
GRANVILLE, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :513-543
[9]  
Dupont C., 2002, THESIS
[10]   Distribution of postcritically finite polynomials [J].
Favre, C. ;
Gauthier, T. .
ISRAEL JOURNAL OF MATHEMATICS, 2015, 209 (01) :235-292