Size effect of zinc oxide-supported gold nanoparticles on the photocatalytic activity for two-electron oxygen reduction reaction

被引:8
作者
Kawano, Seina [1 ]
Fujishima, Musashi [2 ]
Tada, Hiroaki [1 ,2 ]
机构
[1] Kindai Univ, Grad Sch Sci & Engn, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan
[2] Kindai Univ, Fac Sci & Engn, Dept Appl Chem, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan
关键词
Gold nanoparticle; Zinc oxide; Heteroepitaxial junction; Photocatalyst; Particle size effect; Hydrogen peroxide; HYDROGEN-PEROXIDE; WATER; ENHANCEMENT;
D O I
10.1016/j.catcom.2020.106076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
UV-light irradiation of gold nanoparticle-loaded ZnO with a heteroepitaxial junction (Au#ZnO) in aerated ethanol aqueous solution gives rise to two-electron oxygen reduction reaction (ORR) to yield more than 1 mM hydrogen peroxide at only 1-h irradiation. The photocatalytic activity has been revealed to remarkably increase with increasing Au particle size as the result of the increase in H2O2 formation rate and the decrease in its decomposition rate. The outstanding photocatalytic activity of Au#ZnO can mainly stem from the enhancement of charge-separation and the reduction in the loss of H2O2 by the non-adsorptivity of ZnO.
引用
收藏
页数:4
相关论文
共 22 条
  • [1] Enhancement of photovoltage of dye-sensitized solid-state solar cells by introducing high-band-gap oxide layers
    Bandara, J
    Weerasinghe, HC
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 88 (04) : 341 - 350
  • [2] Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles
    Cai, RX
    Kubota, Y
    Fujishima, A
    [J]. JOURNAL OF CATALYSIS, 2003, 219 (01) : 214 - 218
  • [3] Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process
    Campos-Martin, Jose M.
    Blanco-Brieva, Gema
    Fierro, Jose L. G.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) : 6962 - 6984
  • [4] Hydrogen peroxide-photofuel cell using TiO2 photoanode
    Fujiwara, Keigo
    Akita, Atsunobu
    Kawano, Seina
    Fujishima, Musashi
    Tada, Hiroaki
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2017, 84 : 71 - 74
  • [5] Haynes W. M., 2011, HDB CHEM PHYS
  • [6] Sustainable photocatalytic production of hydrogen peroxide from water and molecular oxygen
    Kaynan, Niv
    Berke, Binyamin Adler
    Hazut, Ori
    Yerushalmi, Roie
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (34) : 13822 - 13826
  • [7] PHOTOCATALYTIC PRODUCTION OF H2O2 AND ORGANIC PEROXIDES IN AQUEOUS SUSPENSIONS OF TIO2, ZNO, AND DESERT SAND
    KORMANN, C
    BAHNEMANN, DW
    HOFFMANN, MR
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1988, 22 (07) : 798 - 806
  • [8] Size-Controlled Electron Transfer and Photocatalytic Activity of ZnO-Au Nanoparticle Composites
    Lee, Jaeil
    Shim, Hyeong Seop
    Lee, Myeongsoon
    Song, Jae Kyu
    Lee, Dongil
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (22): : 2840 - 2845
  • [9] Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation
    Li, XZ
    Chen, CC
    Zhao, JC
    [J]. LANGMUIR, 2001, 17 (13) : 4118 - 4122
  • [10] Metal-Particle-Decorated ZnO Nanocrystals: Photocatalysis and Charge Dynamics
    Lin, Wei-Hao
    Chiu, Yi-Hsuan
    Shao, Pao-Wen
    Hsu, Yung-Jung
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (48) : 32754 - 32763