Iwasawa invariants of galois deformations

被引:12
作者
Weston, T [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
D O I
10.1007/s00229-005-0575-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a residual ordinary representation (rho) over bar : G(F) --> GL(n)(k) of the absolute Galois group of a number field F. Generalizing work of Greenberg - Vatsal and Emerton - Pollack - Weston, we show that the Iwasawa invariants of Selmer groups of deformations of (rho) over bar depends only on (rho) over bar and the ramification of the deformation.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 12 条
[1]  
Bloch S., 1990, PROGR MATH, P333, DOI 10.1007/978-0-8176-4574-8_9
[2]   LIFTING MODULAR MOD L REPRESENTATIONS [J].
DIAMOND, F ;
TAYLOR, R .
DUKE MATHEMATICAL JOURNAL, 1994, 74 (02) :253-269
[3]  
EMERTON M, 2004, IN PRESS INVENT MATH
[4]  
FUJIWARA K, DEFORMATION RINGS HE
[5]   On the Iwasawa invariants of elliptic curves [J].
Greenberg, R ;
Vatsal, V .
INVENTIONES MATHEMATICAE, 2000, 142 (01) :17-63
[6]  
Greenberg R, 1999, LECT NOTES MATH, V1716, P51
[7]  
Greenberg R., 1989, ADV STUDIES PURE MAT, V17, P97
[8]   Adjoint Selmer groups as Iwasawa modules [J].
Hida, H .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) :361-427
[9]   ON THE CONDUCTORS OF MOD GALOIS REPRESENTATIONS COMING FROM MODULAR-FORMS [J].
LIVNE, R .
JOURNAL OF NUMBER THEORY, 1989, 31 (02) :133-141
[10]  
PERRINRIOU B, 1994, ASTERISQUE, P185