On the hydrostatic approximation of the Navier-Stokes equations in a thin strip

被引:27
|
作者
Paicu, Marius [1 ]
Zhang, Ping [2 ,3 ,4 ]
Zhang, Zhifei [5 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[5] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Incompressible Navier-Stokes equations; Hydrostatic approximation; Radius of analyticity; ZERO VISCOSITY LIMIT; WELL-POSEDNESS; ANALYTIC SOLUTIONS; GLOBAL REGULARITY; PRANDTL SYSTEM; EXISTENCE; EULER;
D O I
10.1016/j.aim.2020.107293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first prove the global well-posedness of a scaled anisotropic Navier-Stokes system and the hydrostatic Navier-Stokes system in a 2-D striped domain with small analytic data in the tangential variable. Then we justify the limit from the anisotropic Navier-Stokes system to the hydrostatic Navier-Stokes system with analytic data. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:42
相关论文
共 50 条