Around Operator Monotone Functions

被引:24
作者
Moslehian, Mohammad Sal [1 ]
Najafi, Hamed [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, CEAAS, Mashhad 91775, Iran
关键词
Operator monotone function; Jordan product; operator convex function; subadditivity; composition of functions; INEQUALITIES; CONVEX;
D O I
10.1007/s00020-011-1921-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the symmetrized product AB + BA of two positive operators A and B is positive if and only if f(A + B) = f(A)+ f(B) for all non-negative operator monotone functions f on [0, infinity) and deduce an operator inequality. We also give a necessary and sufficient condition for that the composition f circle g of an operator convex function f on [0, infinity) and a non-negative operator monotone function g on an interval (a, b) is operator monotone and present some applications.
引用
收藏
页码:575 / 582
页数:8
相关论文
共 12 条
[1]   Norm inequalities related to operator monotone functions [J].
Ando, T ;
Zhan, XG .
MATHEMATISCHE ANNALEN, 1999, 315 (04) :771-780
[2]   Eigenvalue inequalities for convex and log-convex functions [J].
Aujla, Jaspal Singh ;
Bourin, Jean-Christophe .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 424 (01) :25-35
[3]   Weak majorization inequalities and convex functions [J].
Aujla, JS ;
Silva, FC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 :217-233
[4]  
Bendat J., 1955, T AM MATH SOC, V79, P58, DOI [10.1090/S0002-9947-1955-0082655-4, DOI 10.1090/S0002-9947-1955-0082655-4]
[5]  
Bhatia R., 2013, MATRIX ANAL
[6]  
Furuta T., 2005, Mond-Pecaric Method in Operator Inequalities.
[7]   Interaction antieigenvalues [J].
Gustafson, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (01) :174-185
[8]   OPERATOR-INEQUALITY [J].
HANSEN, F .
MATHEMATISCHE ANNALEN, 1980, 246 (03) :249-250
[9]   JENSEN INEQUALITY FOR OPERATORS AND LOWNER THEOREM [J].
HANSEN, F ;
PEDERSEN, GK .
MATHEMATISCHE ANNALEN, 1982, 258 (03) :229-241
[10]   On monotonous matrix functions. [J].
Lowner, K .
MATHEMATISCHE ZEITSCHRIFT, 1934, 38 :177-216