Regularity theorems and energy identities for Dirac-harmonic maps

被引:78
作者
Chen, Q
Jost, J
Li, JY
Wang, GF
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] Chinese Acad Sci, Inst Math, Max Planck Inst Math Sci, Partner Grp, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s00209-005-0788-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Dirac-harmonic maps from a Riemann surface to a sphere S-n. We show that a weakly Dirac-harmonic map is in fact smooth, and prove that the energy identity holds during the blow-up process.
引用
收藏
页码:61 / 84
页数:24
相关论文
共 19 条
[11]  
LAMM T, 2004, 4 ORDER APPROXIMATIO
[12]  
Lawson HB, 1989, Spin Geometry
[13]   PSEUDO-HOLOMORPHIC MAPS AND BUBBLE TREES [J].
PARKER, TH ;
WOLFSON, JG .
JOURNAL OF GEOMETRIC ANALYSIS, 1993, 3 (01) :63-98
[14]  
Parker TH, 1996, J DIFFER GEOM, V44, P595
[15]  
Qing J, 1997, COMMUN PUR APPL MATH, V50, P295, DOI 10.1002/(SICI)1097-0312(199704)50:4<295::AID-CPA1>3.0.CO
[16]  
2-5
[17]   THE EXISTENCE OF MINIMAL IMMERSIONS OF 2-SPHERES [J].
SACKS, J ;
UHLENBECK, K .
ANNALS OF MATHEMATICS, 1981, 113 (01) :1-24
[18]   AN EXISTENCE THEOREM FOR SURFACES OF CONSTANT MEAN CURVATURE [J].
WENTE, HC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 26 (02) :318-&