Regularity theorems and energy identities for Dirac-harmonic maps

被引:78
作者
Chen, Q
Jost, J
Li, JY
Wang, GF
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] Chinese Acad Sci, Inst Math, Max Planck Inst Math Sci, Partner Grp, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s00209-005-0788-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Dirac-harmonic maps from a Riemann surface to a sphere S-n. We show that a weakly Dirac-harmonic map is in fact smooth, and prove that the energy identity holds during the blow-up process.
引用
收藏
页码:61 / 84
页数:24
相关论文
共 19 条
  • [1] Metrics with harmonic spinors
    Bar, C
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (06) : 899 - 942
  • [2] Bar C., 1992, ANN GLOB ANAL GEOM, V10, P263, DOI [10.1007/BF00136869, DOI 10.1007/BF00136869]
  • [3] CHEN Q, 2004, DIRAC HARMONIC MAPS
  • [4] DING WY, 1996, COMMUN ANAL GEOM, V3, P543
  • [5] Eells J., 1995, 2 REPORTS HARMONIC M
  • [6] HELEIN F, 1991, CR ACAD SCI I-MATH, V312, P591
  • [7] Helein F., 2002, HARMONIC MAPS CONSER
  • [8] HARMONIC SPINORS
    HITCHIN, N
    [J]. ADVANCES IN MATHEMATICS, 1974, 14 (01) : 1 - 55
  • [9] Jost J, 1991, 2 DIMENSIONAL GEOMET
  • [10] Jost J., 2008, Riemannian geometry and geometric analysis, V42005, DOI 10.1007/978-3-319-61860-9