Symplectic embeddings of ellipsoids in dimension greater than four

被引:14
|
作者
Buse, Olguta [1 ]
Hind, Richard
机构
[1] Indiana Univ Purdue Univ, Dept Math, Indianapolis, IN 46202 USA
关键词
HAMILTONIAN-DYNAMICS; ALGEBRAIC-GEOMETRY; PACKING; 4-MANIFOLDS; TOPOLOGY;
D O I
10.2140/gt.2011.15.2091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study symplectic embeddings of ellipsoids into balls. In the main construction, we show that a given embedding of 2 m-dimensional ellipsoids can be suspended to embeddings of ellipsoids in any higher dimension. In dimension 6, if the ratio of the areas of any two axes is sufficiently large then the ellipsoid is flexible in the sense that it fully fills a ball. We also show that the same property holds in all dimensions for sufficiently thin ellipsoids E(1, ... , a). A consequence of our study is that in arbitrary dimension a ball can be fully filled by any sufficiently large number of identical smaller balls, thus generalizing a result of Biran valid in dimension 4.
引用
收藏
页码:2091 / 2110
页数:20
相关论文
共 50 条
  • [1] Symplectic isotopies in dimension greater than four
    Hind, R.
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (04) : 1033 - 1057
  • [2] Symplectic embeddings of ellipsoids
    Felix Schlenk
    Israel Journal of Mathematics, 2003, 138 : 215 - 252
  • [3] Symplectic embeddings of ellipsoids
    Schlenk, F
    ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) : 215 - 252
  • [4] Symplectic embeddings of four-dimensional ellipsoids into integral polydiscs
    Cristofaro-Gardiner, Daniel
    Frenkel, David
    Schlenk, Felix
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (02): : 1189 - 1260
  • [5] Symplectic embeddings of four-dimensional polydisks into half integer ellipsoids
    Digiosia, L.
    Nelson, J.
    Ning, H.
    Weiler, M.
    Yang, Y.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (04)
  • [6] Symplectic embeddings of four-dimensional polydisks into half integer ellipsoids
    L. Digiosia
    J. Nelson
    H. Ning
    M. Weiler
    Y. Yang
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [7] Some optimal embeddings of symplectic ellipsoids
    Hind, R.
    JOURNAL OF TOPOLOGY, 2015, 8 (03) : 871 - 883
  • [8] Ehrhart functions and symplectic embeddings of ellipsoids
    Cristofaro-Gardiner, Dan
    Kleinman, Aaron
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (03): : 1090 - 1111
  • [9] Symplectic embeddings of 4-dimensional ellipsoids
    McDuff, Dusa
    JOURNAL OF TOPOLOGY, 2009, 2 (01) : 1 - 22
  • [10] The rigid-flexible value for symplectic embeddings of four-dimensional ellipsoids into polydiscs
    Jin, Alvin
    Lee, Andrew
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (03)