Current status and future prospects of drug-target interaction prediction

被引:12
|
作者
Ru, Xiaoqing [1 ]
Ye, Xiucai [2 ,3 ]
Sakurai, Tetsuya [2 ,4 ]
Zou, Quan [5 ]
Xu, Lei [6 ]
Lin, Chen [7 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Dept Comp Sci, Tsukuba, Ibaraki 3058577, Japan
[3] Univ Tsukuba, Ctr Artificial Intelligence Res C AIR, Tsukuba, Ibaraki, Japan
[4] Univ Tsukuba, C AIR, Tsukuba, Ibaraki, Japan
[5] Univ Elect Sci & Technol China, Hefei, Peoples R China
[6] Shenzhen Polytech, Sch Elect & Commun Engn, Shenzhen, Peoples R China
[7] Xiamen Univ, Xiamen, Peoples R China
关键词
drug-target interaction; drug development; drug repurposing; machine learning; INTERACTION NETWORKS; MOLECULAR DOCKING; CANDIDATE DRUGS; IDENTIFICATION; DISCOVERY; DEFINITIONS; INTEGRATION; SIMILARITY; DATABASE; RANKING;
D O I
10.1093/bfgp/elab031
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Drug-target interaction prediction is important for drug development and drug repurposing. Many computational methods have been proposed for drug-target interaction prediction due to their potential to the time and cost reduction. In this review, we introduce the molecular docking and machine learning-based methods, which have been widely applied to drug-target interaction prediction. Particularly, machine learning-based methods are divided into different types according to the data processing form and task type. For each type of method, we provide a specific description and propose some solutions to improve its capability. The knowledge of heterogeneous network and learning to rank are also summarized in this review. As far as we know, this is the first comprehensive review that summarizes the knowledge of heterogeneous network and learning to rank in the drug-target interaction prediction. Moreover, we propose three aspects that can be explored in depth for future research.
引用
收藏
页码:312 / 322
页数:11
相关论文
共 50 条
  • [21] Drug-target interaction prediction with deep learning
    YANG Shuo
    LI Shi-liang
    LI Hong-lin
    中国药理学与毒理学杂志, 2019, (10) : 855 - 855
  • [22] Some Remarks on Prediction of Drug-Target Interaction with Network Models
    Zhang, Shao-Wu
    Yan, Xiao-Ying
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2017, 17 (21) : 2456 - 2468
  • [23] Drug-target interaction prediction by random walk on the heterogeneous network
    Chen, Xing
    Liu, Ming-Xi
    Yan, Gui-Ying
    MOLECULAR BIOSYSTEMS, 2012, 8 (07) : 1970 - 1978
  • [24] Systems Pharmacology: A Unified Framework for Prediction of Drug-Target Interactions
    Duc-Hau Le
    Ly Le
    CURRENT PHARMACEUTICAL DESIGN, 2016, 22 (23) : 3569 - 3575
  • [25] Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction
    Azlim Khan, Azwaar Khan
    Ahamed Hassain Malim, Nurul Hashimah
    MOLECULES, 2023, 28 (04):
  • [26] Barlow Twins deep neural network for advanced 1D drug-target interaction prediction
    Schuh, Maximilian G.
    Boldini, Davide
    Bohne, Annkathrin I.
    Sieber, Stephan A.
    JOURNAL OF CHEMINFORMATICS, 2025, 17 (01):
  • [27] Drug-Target Interaction Prediction Based on Gaussian Interaction Profile and Information Entropy
    Liu, Lina
    Yao, Shuang
    Ding, Zhaoyun
    Guo, Maozu
    Yu, Donghua
    Hu, Keli
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2021, 2021, 13064 : 388 - 399
  • [28] Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Matrix Completion
    Wang, Minhui
    Tang, Chang
    Chen, Jiajia
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [29] Using Feature Selection Technique for Drug-Target Interaction Networks Prediction
    Yu, W.
    Jiang, Z.
    Wang, J.
    Tao, R.
    CURRENT MEDICINAL CHEMISTRY, 2011, 18 (36) : 5687 - 5693
  • [30] Drug-target interaction prediction using artificial intelligence
    Yaseen, Baraa Taha
    Kurnaz, Sefer
    APPLIED NANOSCIENCE, 2021, 13 (5) : 3335 - 3345