共 50 条
Current status and future prospects of drug-target interaction prediction
被引:12
|作者:
Ru, Xiaoqing
[1
]
Ye, Xiucai
[2
,3
]
Sakurai, Tetsuya
[2
,4
]
Zou, Quan
[5
]
Xu, Lei
[6
]
Lin, Chen
[7
]
机构:
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Dept Comp Sci, Tsukuba, Ibaraki 3058577, Japan
[3] Univ Tsukuba, Ctr Artificial Intelligence Res C AIR, Tsukuba, Ibaraki, Japan
[4] Univ Tsukuba, C AIR, Tsukuba, Ibaraki, Japan
[5] Univ Elect Sci & Technol China, Hefei, Peoples R China
[6] Shenzhen Polytech, Sch Elect & Commun Engn, Shenzhen, Peoples R China
[7] Xiamen Univ, Xiamen, Peoples R China
关键词:
drug-target interaction;
drug development;
drug repurposing;
machine learning;
INTERACTION NETWORKS;
MOLECULAR DOCKING;
CANDIDATE DRUGS;
IDENTIFICATION;
DISCOVERY;
DEFINITIONS;
INTEGRATION;
SIMILARITY;
DATABASE;
RANKING;
D O I:
10.1093/bfgp/elab031
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Drug-target interaction prediction is important for drug development and drug repurposing. Many computational methods have been proposed for drug-target interaction prediction due to their potential to the time and cost reduction. In this review, we introduce the molecular docking and machine learning-based methods, which have been widely applied to drug-target interaction prediction. Particularly, machine learning-based methods are divided into different types according to the data processing form and task type. For each type of method, we provide a specific description and propose some solutions to improve its capability. The knowledge of heterogeneous network and learning to rank are also summarized in this review. As far as we know, this is the first comprehensive review that summarizes the knowledge of heterogeneous network and learning to rank in the drug-target interaction prediction. Moreover, we propose three aspects that can be explored in depth for future research.
引用
收藏
页码:312 / 322
页数:11
相关论文