Current status and future prospects of drug-target interaction prediction

被引:14
|
作者
Ru, Xiaoqing [1 ]
Ye, Xiucai [2 ,3 ]
Sakurai, Tetsuya [2 ,4 ]
Zou, Quan [5 ]
Xu, Lei [6 ]
Lin, Chen [7 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Dept Comp Sci, Tsukuba, Ibaraki 3058577, Japan
[3] Univ Tsukuba, Ctr Artificial Intelligence Res C AIR, Tsukuba, Ibaraki, Japan
[4] Univ Tsukuba, C AIR, Tsukuba, Ibaraki, Japan
[5] Univ Elect Sci & Technol China, Hefei, Peoples R China
[6] Shenzhen Polytech, Sch Elect & Commun Engn, Shenzhen, Peoples R China
[7] Xiamen Univ, Xiamen, Peoples R China
关键词
drug-target interaction; drug development; drug repurposing; machine learning; INTERACTION NETWORKS; MOLECULAR DOCKING; CANDIDATE DRUGS; IDENTIFICATION; DISCOVERY; DEFINITIONS; INTEGRATION; SIMILARITY; DATABASE; RANKING;
D O I
10.1093/bfgp/elab031
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Drug-target interaction prediction is important for drug development and drug repurposing. Many computational methods have been proposed for drug-target interaction prediction due to their potential to the time and cost reduction. In this review, we introduce the molecular docking and machine learning-based methods, which have been widely applied to drug-target interaction prediction. Particularly, machine learning-based methods are divided into different types according to the data processing form and task type. For each type of method, we provide a specific description and propose some solutions to improve its capability. The knowledge of heterogeneous network and learning to rank are also summarized in this review. As far as we know, this is the first comprehensive review that summarizes the knowledge of heterogeneous network and learning to rank in the drug-target interaction prediction. Moreover, we propose three aspects that can be explored in depth for future research.
引用
收藏
页码:312 / 322
页数:11
相关论文
共 50 条
  • [1] DrugormerDTI: Drug Graphormer for drug-target interaction prediction
    Hu, Jiayue
    Yu, Wang
    Pang, Chao
    Jin, Junru
    Truong Pham, Nhat
    Manavalan, Balachandran
    Wei, Leyi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 161
  • [2] Drug-target interaction prediction with deep learning
    YANG Shuo
    LI Shi-liang
    LI Hong-lin
    中国药理学与毒理学杂志, 2019, (10) : 855 - 855
  • [3] Machine Learning for Drug-Target Interaction Prediction
    Chen, Ruolan
    Liu, Xiangrong
    Jin, Shuting
    Lin, Jiawei
    Liu, Juan
    MOLECULES, 2018, 23 (09):
  • [4] Transfer learning for drug-target interaction prediction
    Dalkiran, Alperen
    Atakan, Ahmet
    Rifaioglu, Ahmet S.
    Martin, Maria J.
    Atalay, Renguel Cetin
    Acar, Aybar C.
    Dogan, Tunca
    Atalay, Volkan
    BIOINFORMATICS, 2023, 39 : I103 - I110
  • [5] Transfer learning for drug-target interaction prediction
    Dalkiran, Alperen
    Atakan, Ahmet
    Rifaioglu, Ahmet S.
    Martin, Maria J.
    Atalay, Rengul Cetin
    Acar, Aybar C.
    Dogan, Tunca
    Atalay, Volkan
    BIOINFORMATICS, 2023, 39 : i103 - i110
  • [6] The Computational Models of Drug-Target Interaction Prediction
    Ding, Yijie
    Tang, Jijun
    Guo, Fei
    PROTEIN AND PEPTIDE LETTERS, 2020, 27 (05): : 348 - 358
  • [7] Drug-Target Interaction Prediction Based on Transformer
    Liu, Junkai
    Jiang, Tengsheng
    Lu, Yaoyao
    Wu, Hongjie
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 302 - 309
  • [8] MolTrans: Molecular Interaction Transformer for drug-target interaction prediction
    Huang, Kexin
    Xiao, Cao
    Glass, Lucas M.
    Sun, Jimeng
    BIOINFORMATICS, 2021, 37 (06) : 830 - 836
  • [9] Drug-Target Interaction Prediction with Weighted Bayesian Ranking
    Shi, Zezhi
    Li, Jianhua
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 19 - 24
  • [10] Ensemble Learning Algorithm for Drug-Target Interaction Prediction
    Pathak, Sudipta
    Cai, Xingyu
    2017 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2017,