Current status and future prospects of drug-target interaction prediction

被引:12
|
作者
Ru, Xiaoqing [1 ]
Ye, Xiucai [2 ,3 ]
Sakurai, Tetsuya [2 ,4 ]
Zou, Quan [5 ]
Xu, Lei [6 ]
Lin, Chen [7 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Dept Comp Sci, Tsukuba, Ibaraki 3058577, Japan
[3] Univ Tsukuba, Ctr Artificial Intelligence Res C AIR, Tsukuba, Ibaraki, Japan
[4] Univ Tsukuba, C AIR, Tsukuba, Ibaraki, Japan
[5] Univ Elect Sci & Technol China, Hefei, Peoples R China
[6] Shenzhen Polytech, Sch Elect & Commun Engn, Shenzhen, Peoples R China
[7] Xiamen Univ, Xiamen, Peoples R China
关键词
drug-target interaction; drug development; drug repurposing; machine learning; INTERACTION NETWORKS; MOLECULAR DOCKING; CANDIDATE DRUGS; IDENTIFICATION; DISCOVERY; DEFINITIONS; INTEGRATION; SIMILARITY; DATABASE; RANKING;
D O I
10.1093/bfgp/elab031
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Drug-target interaction prediction is important for drug development and drug repurposing. Many computational methods have been proposed for drug-target interaction prediction due to their potential to the time and cost reduction. In this review, we introduce the molecular docking and machine learning-based methods, which have been widely applied to drug-target interaction prediction. Particularly, machine learning-based methods are divided into different types according to the data processing form and task type. For each type of method, we provide a specific description and propose some solutions to improve its capability. The knowledge of heterogeneous network and learning to rank are also summarized in this review. As far as we know, this is the first comprehensive review that summarizes the knowledge of heterogeneous network and learning to rank in the drug-target interaction prediction. Moreover, we propose three aspects that can be explored in depth for future research.
引用
收藏
页码:312 / 322
页数:11
相关论文
共 50 条
  • [1] Recent Advances in the Machine Learning-based Drug-target Interaction Prediction
    Zhang, Wen
    Lin, Weiran
    Zhang, Ding
    Wang, Siman
    Shi, Jingwen
    Niu, Yanqing
    CURRENT DRUG METABOLISM, 2019, 20 (03) : 194 - 202
  • [2] Application of Machine Learning for Drug-Target Interaction Prediction
    Xu, Lei
    Ru, Xiaoqing
    Song, Rong
    FRONTIERS IN GENETICS, 2021, 12
  • [3] The Computational Models of Drug-Target Interaction Prediction
    Ding, Yijie
    Tang, Jijun
    Guo, Fei
    PROTEIN AND PEPTIDE LETTERS, 2020, 27 (05) : 348 - 358
  • [4] Drug-Target Interactions: Prediction Methods and Applications
    Anusuya, Shanmugam
    Kesherwani, Manish
    Priya, K. Vishnu
    Vimala, Antonydhason
    Shanmugam, Gnanendra
    Velmurugan, Devadasan
    Gromiha, M. Michael
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2018, 19 (06) : 537 - 561
  • [5] Machine Learning for Drug-Target Interaction Prediction
    Chen, Ruolan
    Liu, Xiangrong
    Jin, Shuting
    Lin, Jiawei
    Liu, Juan
    MOLECULES, 2018, 23 (09):
  • [6] Drug-target interaction prediction via chemogenomic space: learning-based methods
    Mousavian, Zaynab
    Masoudi-Nejad, Ali
    EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2014, 10 (09) : 1273 - 1287
  • [7] Drug-target interaction prediction: A Bayesian ranking approach
    Peska, Ladislav
    Buza, Krisztian
    Koller, Julia
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 152 : 15 - 21
  • [8] DrugRPE: Random projection ensemble approach to drug-target interaction prediction
    Zhang, Jun
    Zhu, Muchun
    Chen, Peng
    Wang, Bing
    NEUROCOMPUTING, 2017, 228 : 256 - 262
  • [9] Drug-Target Interaction Prediction: End-to-End Deep Learning Approach
    Monteiro, Nelson R. C.
    Ribeiro, Bernardete
    Arrais, Joel P.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (06) : 2364 - 2374
  • [10] Integrating bioassay data for improved prediction of drug-target interaction
    Dai, Weixing
    Li, Li
    Guo, Dianjing
    BIOPHYSICAL CHEMISTRY, 2020, 266