Secondary Self-Assembly of Supramolecular Nanotubes into Tubisomes and Their Activity on Cells

被引:48
作者
Brendel, Johannes C. [1 ]
Sanchis, Joaquin [2 ]
Catrouillet, Sylvain [1 ]
Czuba, Ewa [2 ]
Chen, Moore Z. [2 ]
Long, Benjamin M. [3 ]
Nowell, Cameron [2 ]
Johnston, Angus [2 ]
Jolliffe, Katrina A. [3 ]
Perrier, Sebastien [1 ,2 ,4 ]
机构
[1] Univ Warwick, Dept Chem, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[2] Monash Univ, Fac Pharm & Pharmaceut Sci, 381 Royal Parade, Parkville, Vic 3052, Australia
[3] Univ Sydney, Sch Chem, Bldg F11, Sydney, NSW 2006, Australia
[4] Univ Warwick, Warwick Med Sch, Coventry CV4 7AL, W Midlands, England
基金
欧洲研究理事会;
关键词
cyclic peptides; lysosomal escape; nanotubes; supramolecular assemblies; PERYLENE BISIMIDE DYE; POLYMER; VIRUS; MICELLES; RELEASE;
D O I
10.1002/anie.201808543
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The properties and structures of viruses are directly related to the three-dimensional structure of their capsid proteins, which arises from a combination of hydrophobic and supramolecular interactions, such as hydrogen bonds. The design of synthetic materials demonstrating similar synergistic interactions still remains a challenge. Herein, we report the synthesis of a polymer/cyclic peptide conjugate that combines the capability to form supramolecular nanotubes via hydrogen bonds with the properties of an amphiphilic block copolymer. The analysis of aqueous solutions by scattering and imaging techniques revealed a barrel-shaped alignment of single peptide nanotubes into a large tubisome (length: 260 nm (from SANS)) with a hydrophobic core (diameter: 16 nm) and a hydrophilic shell. These systems, which have a structure that is similar to those of viruses, were tested invitro to elucidate their activity on cells. Remarkably, the rigid tubisomes are able to perforate the lysosomal membrane in cells and release a small molecule into the cytosol.
引用
收藏
页码:16678 / 16682
页数:5
相关论文
共 48 条
[1]   Mammalian reovirus, a nonfusogenic nonenveloped virus, forms size-selective pores in a model membrane [J].
Agosto, Melina A. ;
Ivanovic, Tijana ;
Nibert, Max L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (44) :16496-16501
[2]   Functional Supramolecular Polymers [J].
Aida, T. ;
Meijer, E. W. ;
Stupp, S. I. .
SCIENCE, 2012, 335 (6070) :813-817
[3]   Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications [J].
Blanazs, Adam ;
Armes, Steven P. ;
Ryan, Anthony J. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (4-5) :267-277
[4]   Drug Conjugation to Cyclic Peptide-Polymer Self-Assembling Nanotubes [J].
Blunden, Bianca M. ;
Chapman, Robert ;
Danial, Maarten ;
Lu, Hongxu ;
Jolliffe, Katrina A. ;
Perrier, Sebastien ;
Stenzel, Martina H. .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (40) :12745-12749
[5]   Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences [J].
Boerner, Hans G. .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (09) :811-851
[6]   Structure elucidation and control of cyclic peptide-derived nanotube assemblies in solution [J].
Chapman, Robert ;
Koh, Ming Liang ;
Warr, Gregory G. ;
Jolliffe, Katrina A. ;
Perrier, Sebastien .
CHEMICAL SCIENCE, 2013, 4 (06) :2581-2589
[7]   Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates [J].
Chapman, Robert ;
Danial, Maarten ;
Koh, Ming Liang ;
Jolliffe, Katrina A. ;
Perrier, Sebastien .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (18) :6023-6041
[8]   Morphological control and molecular recognition by bis-urea hydrogen bonding in micelles of amphiphilic tri-block copolymers [J].
Chebotareva, N ;
Bomans, PHH ;
Frederik, PM ;
Sommerdijk, NAJM ;
Sijbesma, RP .
CHEMICAL COMMUNICATIONS, 2005, (39) :4967-4969
[9]   Peptide-polymer hybrid nanotubes [J].
Couet, J ;
Jeyaprakash, JD ;
Samuel, S ;
Kopyshev, A ;
Santer, S ;
Biesalski, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (21) :3297-3301
[10]  
COUET J, 2005, ANGEW CHEM, V117, P3361