A spectral collocation method for a rotating Bose-Einstein condensation in optical lattices

被引:7
|
作者
Li, Z. -C. [2 ,3 ]
Chen, S. -Y. [4 ]
Chien, C. -S. [1 ]
Chen, H. -S. [1 ]
机构
[1] Ching Yun Univ, Dept Comp Sci & Informat Engn, Jhongli 32097, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Comp Sci & Engn, Dept Appl Math, Kaohsiung 80424, Taiwan
[3] Chung Hua Univ, Dept Appl Math, Hsinchu 30012, Taiwan
[4] Natl Chung Hsing Univ, Dept Appl Math, Taichung 40227, Taiwan
关键词
Spectral-Galerkin method; Gross-Pitaevskii equation; Legendre polynomials; Strong monotonicity condition; Error analysis; ELEMENT METHODS; FINITE-ELEMENT; VORTEX; CONTINUATION;
D O I
10.1016/j.cpc.2011.02.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We extend the study of spectral collocation methods (SCM) in Li et al. (2009) [1] for semilinear elliptic eigenvalue problems to that for a rotating Bose-Einstein condensation (BEC) and a rotating BEC in optical lattices. We apply the Lagrange interpolants using the Legendre-Gauss-Lobatto points to derive error bounds for the SCM. The optimal error bounds are derived for both H-1-norm and L-2-norm. Extensive numerical experiments on a rotating Bose-Einstein condensation and a rotating BEC in optical lattices are reported. Our numerical results show that the convergence rate of the SCM is exponential, and is independent of the collocation points we choose. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1215 / 1234
页数:20
相关论文
共 50 条
  • [1] Spectral collocation methods using sine functions for a rotating Bose-Einstein condensation in optical lattices
    Chen, Huei-Shuang
    Chang, Shing-Lin
    Chien, Cheng-Sheng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) : 1553 - 1569
  • [2] Bose-Einstein condensation in diamond hierarchical lattices
    Lyra, M. L.
    de Moura, F. A. B. F.
    de Oliveira, I. N.
    Serva, M.
    PHYSICAL REVIEW E, 2014, 89 (05):
  • [3] Critical temperature and condensed fraction of Bose-Einstein condensation in optical lattices
    Yu XueCai
    Huang Xue
    Ye YuTang
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2007, 50 (02): : 177 - 184
  • [4] Critical temperature and condensed fraction of Bose-Einstein condensation in optical lattices
    XueCai Yu
    Xue Huang
    YuTang Ye
    Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50 : 177 - 184
  • [6] Vortex lattices in rotating Bose-Einstein condensates
    Aftalion, Amandine
    Blanc, Xavier
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (03) : 874 - 893
  • [7] Bose-Einstein condensates in optical lattices
    Wasilewski, W
    Trippenbach, M
    Rzazewski, K
    ACTA PHYSICA POLONICA A, 2002, 101 (01) : 47 - 60
  • [8] A Rotating Bose-Einstein Condensation in a Toroidal Trap
    Wen Yu-Chuan
    Zhang Peng-Ming
    Yang Shi-Jie
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 1031 - 1034
  • [9] A Rotating Bose-Einstein Condensation in a Toroidal Trap
    文渝川
    张鹏鸣
    杨师杰
    CommunicationsinTheoreticalPhysics, 2011, 56 (12) : 1031 - 1034
  • [10] Thermodynamic properties of a rotating Bose-Einstein condensation in a deep optical lattice
    Abdel-Gany, Hend A.
    Ellithi, Ali Y.
    Galal, Abdelhamid A.
    Hassan, Ahmed S.
    TURKISH JOURNAL OF PHYSICS, 2014, 38 (01): : 39 - 49