Class imbalance in machine learning for neurosurgical outcome prediction: are our models valid?

被引:16
作者
Staartjes, Victor E. [1 ]
Schroder, Marc L. [1 ]
机构
[1] Bergman Clin, Amsterdam, Netherlands
关键词
D O I
10.3171/2018.5.SPINE18543
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
引用
收藏
页码:611 / 612
页数:2
相关论文
共 50 条
[41]   Machine Learning on Biomedical Images: Interactive Learning, Transfer Learning, Class Imbalance, and Beyond [J].
Khan, Naimul Mefraz ;
Abraham, Nabila ;
Hon, Marcia ;
Guan, Ling .
2019 2ND IEEE CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2019), 2019, :85-90
[42]   The effect of resampling techniques on the performances of machine learning clinical risk prediction models in the setting of severe class imbalance: development and internal validation in a retrospective cohort [J].
Ke, Janny Xue Chen ;
DhakshinaMurthy, Arunachalam ;
George, Ronald B. ;
Branco, Paula .
Discover Artificial Intelligence, 2024, 4 (01)
[43]   Prediction of copper contamination in soil across EU using spectroscopy and machine learning: Handling class imbalance problem [J].
Qi, Chongchong ;
Zhou, Nana ;
Hu, Tao ;
Wu, Mengting ;
Chen, Qiusong ;
Wang, Han ;
Zhang, Kejing ;
Lin, Zhang .
SMART AGRICULTURAL TECHNOLOGY, 2025, 10
[44]   Machine learning models and bankruptcy prediction [J].
Barboza, Flavio ;
Kimura, Herbert ;
Altman, Edward .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 83 :405-417
[45]   Class-specific extreme learning machine for handling binary class imbalance problem [J].
Raghuwanshi, Bhagat Singh ;
Shukla, Sanyam .
NEURAL NETWORKS, 2018, 105 :206-217
[46]   The Performance Stability of Defect Prediction Models with Class Imbalance: An Empirical Study [J].
Yu, Qiao ;
Jiang, Shujuan ;
Zhang, Yanmei .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (02) :265-272
[47]   Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models [J].
Alaka, Shakiru A. ;
Menon, Bijoy K. ;
Brobbey, Anita ;
Williamson, Tyler ;
Goyal, Mayank ;
Demchuk, Andrew M. ;
Hill, Michael D. ;
Sajobi, Tolulope T. .
FRONTIERS IN NEUROLOGY, 2020, 11
[48]   Litigation Outcome Prediction of Differing Site Condition Disputes through Machine Learning Models [J].
Mahfouz, Tarek ;
Kandil, Amr .
JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2012, 26 (03) :298-308
[49]   Class Result Prediction using Machine Learning [J].
Pushpa, S. K. ;
Manjunath, T. N. ;
Mrunal, T., V ;
Singh, Amartya ;
Suhas, C. .
PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), 2017, :1208-1212
[50]   The impact of class imbalance techniques on crashing fault residence prediction models [J].
Kunsong Zhao ;
Zhou Xu ;
Meng Yan ;
Tao Zhang ;
Lei Xue ;
Ming Fan ;
Jacky Keung .
Empirical Software Engineering, 2023, 28