Classification model in different forest strata in a floodplain environment using artificial neural networks

被引:0
作者
Silva, Anthoinny Vittoria dos Santos [1 ]
de Souza, Rodrigo Galvao Teixeira [2 ]
Liarte, Gabriel Victor Caetano Carvalho [2 ]
Pinho, Bianca Caterine Piedade [3 ]
de Oliveira, Cinthia Pereira [2 ]
Gonzales, Duberli Geomar Elera [4 ]
de Lima, Robson Borges [2 ]
de Abreu, Jadson Coelho [2 ]
机构
[1] Univ Fed Vales Jequitinhonha & Mucuri, Dept Engn Florestal, Diamantina, MG, Brazil
[2] Univ Estado Amapa, Lab Manejo Florestal, Macapa, Amapa, Brazil
[3] Inst Fed Para, Parauapebas, Para, Brazil
[4] Univ Nacl Autonoma Chota, Escuela Profes Ingn Forestal & Ambiental, Cajamarca, Peru
来源
REVISTA FORESTAL MESOAMERICA KURU-RFMK | 2022年 / 19卷 / 45期
关键词
Machine learning; resilient propagation; stratification; TREES;
D O I
10.18845/rfmk.v19i45.6326
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The Amazon forest presents different forest strata, due to its heterogeneous structure. In which these strata can vary in upper, middle and lower. Knowledge about the different patterns of vertical structures found in the forest is extremely important for understanding the vegetation dynamics, influencing forest conservation strategies. In order to optimize the process of classifying the different types of strata, the objective of the present work was to use artificial neural networks (ANNs) to classify these strata. Two resilient propagation algorithms (Rprop + and Rprop-) were used, in four different configurations of input variables. The training and testing of the eight RNA models were performed using the R software. The models were evaluated using a confusion matrix. In which models with inputs: HT, DAP and QF; HT, DAP and only HT from the Rprop + algorithm obtained 100% correct answers in the classification of strata. Demonstrating a high rate of learning, reliability and generalization of data.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 2015, REV BRASILEIRA BIOME
[2]  
[Anonymous], REV FLORESTAL VENEZO
[3]  
Brunialti Lucas F, 2015, P 11 BRAZ S INF SYST, P203
[4]  
Bueno G.F., 2020, BIOFIX SCI J, V5, P222
[5]  
Campos B. P. F., 2016, Pesquisa Florestal Brasileira, V36, P375
[6]   Composition and Dynamics of Functional Groups of Trees During Tropical Forest Succession in Northeastern Costa Rica [J].
Chazdon, Robin L. ;
Finegan, Bryan ;
Capers, Robert S. ;
Salgado-Negret, Beatriz ;
Casanoves, Fernando ;
Boukili, Vanessa ;
Norden, Natalia .
BIOTROPICA, 2010, 42 (01) :31-40
[7]   Phytosociology of a dense ombrophilous forest in the northern Amazon, Roraima, Brazil [J].
Conde, Tiago Monteiro ;
Tonini, Helio .
ACTA AMAZONICA, 2013, 43 (03) :247-259
[8]  
Pereira GHD, 2017, B CIENC GEOD, V23, P268, DOI [10.1590/S1982-21702017000200017, 10.1590/s1982-21702017000200017]
[9]  
dos Reis Martins E., 2016, Revista Brasileirade Ciencias Agrarias, V11, P33, DOI [10.5039/ agraria.v11i1a5354, DOI 10.5039/AGRARIA.V11I1A5354]
[10]  
Fleck L., 2016, Revista Eletronica Cientifica Inovacao e Tecnologia, V1, P47