Asymptotic behaviour of solutions of a degenerate parabolic equation

被引:6
作者
Kwak, M [1 ]
Yu, K [1 ]
机构
[1] Chonnam Natl Univ, Dept Math, Kwangju 500757, South Korea
关键词
asymptotic behaviour of solutions; a degenerate parabolic equation; initial value problem;
D O I
10.1016/S0362-546X(99)00333-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior of nonnegative solutions of the following equations: ut = δpu - |u|q-1u in Q = RN × (0,∞), u(x,0) = φ(x), was studied where δpu=div(|∇u|p-2∇u), with p > 2N/(N + 1), N ≥ 1, max {1, p-1} < q < p - 1 + p/N and φ is a given nonnegative initial function. The long time behavior of nonnegative solutions is classified by a class of solutions with self-similarity depending on the parameters p,q and the asymptotic behavior of φ(x) as |x| → ∞.
引用
收藏
页码:109 / 121
页数:13
相关论文
共 19 条
[1]   Uniqueness of the very singular solution of a degenerate parabolic equation [J].
Baek, JS ;
Kwak, M ;
Yu, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (01) :123-135
[2]  
BAEK JS, 1984, THESIS SEOUL NATL U
[3]  
BREZIS H, 1983, J MATH PURE APPL, V62, P73
[4]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[5]  
DIBENEDETTO E, 1985, J REINE ANGEW MATH, V357, P1
[6]  
Dibenedetto E, 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[7]   LARGE TIME BEHAVIOR OF SOLUTIONS OF A DISSIPATIVE SEMILINEAR HEAT-EQUATION [J].
ESCOBEDO, M ;
KAVIAN, O ;
MATANO, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (7-8) :1427-1452
[8]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type
[9]   LARGE TIME BEHAVIOR OF THE SOLUTIONS OF A SEMILINEAR PARABOLIC EQUATION IN RN [J].
GMIRA, A ;
VERON, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 53 (02) :258-276
[10]   QUASILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
GUEDDA, M ;
VERON, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :879-902