Ppb-Level Triethylamine Gas Sensors Based on Palladium Nanoparticles Modified Flower-Like In2O3 Grown on rGO Nanosheets Operating at Low Temperature

被引:29
|
作者
Meng, Fanli [1 ,2 ,3 ,4 ]
Wang, Huai [2 ]
Yuan, Zhenyu [1 ,2 ,3 ,4 ]
Zhang, Renze [2 ]
Li, Jin [1 ,2 ,3 ,4 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[3] Hebei Key Lab Micronano Precis Opt Sensing & Meas, Qinhuangdao 066004, Hebei, Peoples R China
[4] Northeastern Univ, Minist Educ, Key Lab Data Analyt & Optimizat Smart Ind, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Gas detectors; Temperature sensors; Nanocomposites; Palladium; Nanoparticles; Temperature measurement; Microstructure; Low temperature; Ppb-level; rGO; Pd; triethylamine gas sensor; SENSING PROPERTIES; FAST-RESPONSE; NO2; PERFORMANCE; HETEROJUNCTION; NANOCOMPOSITES; PD; HETEROSTRUCTURE; MICROSPHERES; NANORODS;
D O I
10.1109/TIM.2022.3189731
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Triethylamine is a toxic gas that strongly stimulates the respiratory tract, resulting in even death after inhalation. However, conventional gas sensors can not detect the ppb levels of triethylamine gas and can not achieve the purpose of environmental detection in life. Therefore, developing ppb-level triethylamine gas sensors is indispensable. In this article, rGO/In2O3/Pd nanocomposites were prepared by the one-step hydrothermal method. The morphology and structure were fully characterized by transmission electron microscopy etc., which demonstrated that the microstructure of palladium nanoparticles modified flower-like In2O3 grown on rGO nanosheets was successfully synthesized. The gas sensor based on rGO/In2O3/Pd nanocomposites was then tested for its gas sensitivity. According to the experimental data, the sensitivity of rGO/In2O3/Pd to triethylamine gas was better than that of pure In2O3, In2O3/Pd, and rGO/In2O3, and the optimal working temperature of rGO/In2O3/Pd to triethylamine was 175. Besides, the gas sensor based on rGO/In2O3/Pd could detect 1 ppb triethylamine. The response value of rGO/In2O3/Pd to 1 ppb triethylamine at the optimal working temperature can reach 1.27. Finally, the gas sensitivity mechanism of the rGO/In2O3/Pd composite was analyzed.
引用
收藏
页数:9
相关论文
共 39 条
  • [21] Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature
    Nie, Qingxin
    Pang, Zengyuan
    Lu, Hangyi
    Cai, Yibing
    Wei, Qufu
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2016, 7 : 1312 - 1321
  • [22] Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection
    Liu, Jie
    Li, Shan
    Zhang, Bo
    Wang, Yinglin
    Gao, Yuan
    Liang, Xishuang
    Wang, Yue
    Lu, Geyu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 504 : 206 - 213
  • [23] In Situ Growth of Dense In2O3 Nanoparticles on Biomimetic Leaf-Shaped CdS Nanostructures for Ppb-Level Gas-Sensing Detection
    Fu, Xiangqian
    Zhang, Xiaoman
    Han, Tianli
    Liu, Jinyun
    Liu, Jinhuai
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (10) : 1058 - 1064
  • [24] Gas Sensor Based on Flower-like NiO Modified with WO3 Nanoparticles for NO2 Detection
    Li, Qianyun
    Zhang, Peng
    Ning, Tengge
    Sun, Yushu
    Ren, Qianqian
    Xu, Manzhang
    Zhao, Xinya
    Luo, Xiaoli
    Zhai, Chunxue
    Yan, Junfeng
    Ma, Xiaolong
    Li, Qiang
    Wu, Zhao
    ACS APPLIED NANO MATERIALS, 2024, 7 (07) : 7856 - 7864
  • [25] Flower-like SnO2 nanorod aggregates modified with Co3O4 nanoparticles grown on reduced graphene oxide(rGO) sheets for xylene sensing
    Gao, Peng
    Wang, Huai
    Li, Xiaozhi
    Meng, Fanli
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1004
  • [26] Conductometric butanone gas sensor based on Co3O4 modified SnO2 hollow spheres with ppb-level detection limit
    Liu, Yang
    Ji, Hanyang
    Yuan, Zhenyu
    Meng, Fanli
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 374
  • [27] CsPbBr3 Quantum Dot Modified In2O3 Nanofibers for Effective Detection of ppb-Level HCHO at Room Temperature under UV Illumination
    Liu, Miao
    Song, Peng
    Wang, Qi
    Yan, Mei
    ACS SENSORS, 2024, 9 (11): : 6040 - 6050
  • [28] A low temperature operating gas sensor with high response to NO2 based on ordered mesoporous Ni-doped In2O3
    Yang, Qiuyue
    Cui, Xiaobiao
    Liu, Jiangyang
    Zhao, Jing
    Wang, Yinglin
    Gao, Yuan
    Sun, Peng
    Ma, Jian
    Lu, Geyu
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (03) : 2376 - 2382
  • [29] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature*
    Xuan, Jing-Yue
    Zhao, Guo-Dong
    Shi, Xiao-Bo
    Geng, Wei
    Li, Heng-Zheng
    Sun, Mei-Ling
    Jia, Fu-Chao
    Tan, Shu-Gang
    Yin, Guang-Chao
    Liu, Bo
    CHINESE PHYSICS B, 2021, 30 (02)
  • [30] Resister-type sensors based on Ti3C2Tx MXene decorated In2O3 p-n heterojunction for ppb-level NO2 detection at room temperature
    Qiu, Limin
    Huo, Yangyang
    Pan, Zhiguang
    Wang, Tianqi
    Yu, Hui
    Liu, Xintong
    Tong, Xinyue
    Yang, Ying
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):