Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials

被引:163
作者
Liu, Shuo [1 ,2 ]
Cui, Tie Jun [1 ,2 ]
机构
[1] Southeast Univ, Dept Radio Engn, State Key Lab Millimeter Waves, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Synerget Innovat Ctr Wireless Commun Technol, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
anisotropic; coding metamaterials; metasurfaces; programmable metamaterials; terahertz; 3-DIMENSIONAL BROAD-BAND; TERAHERTZ WAVES; EXPERIMENTAL-VERIFICATION; NEGATIVE INDEX; PHASE; POLARIZATION; METASURFACE; SCATTERING; FIELD; MANIPULATION;
D O I
10.1002/adom.201700624
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As a digital version of metamaterials, coding and programmable metamaterials have experienced rapid development since they were initially proposed in 2014. Unlike conventional metamaterials that are characterized by the sophisticated effective medium theory, coding metamaterials are described in a much simpler manner with binary codes, which builds up a bridge between the physical world and the digital world. In this article, the development of coding and programmable metamaterials in the past three years is reviewed, focusing primarily on the basic concept, working principle, design method, fabrication, and experimental validation. First, reflection-type and refraction-type coding metamaterials, along with two bifunctional coding metamaterials, are presented in the microwave, terahertz, and acoustic regimes. Second, the digital convolution theorem and information entropy of coding metamaterials are introduced to demonstrate the strong connection between metamaterials and information science. Then, recent progresses on engineering realization of field-programmable metamaterials are demonstrated, including the compensation technique of plane waves under point source illumination, and applications in single-sensor single-frequency imaging systems. Finally, future directions and potential applications are summarized, followed by discussions on major challenges encountered in the design and fabrication of programmable metamaterials at higher frequencies.
引用
收藏
页数:27
相关论文
共 116 条
[1]   Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces [J].
Aieta, Francesco ;
Genevet, Patrice ;
Kats, Mikhail A. ;
Yu, Nanfang ;
Blanchard, Romain ;
Gahurro, Zeno ;
Capasso, Federico .
NANO LETTERS, 2012, 12 (09) :4932-4936
[2]   Functional Metamirrors Using Bianisotropic Elements [J].
Asadchy, V. S. ;
Ra'di, Y. ;
Vehmas, J. ;
Tretyakov, S. A. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[3]   A spatial light modulator for terahertz beams [J].
Chan, Wai Lam ;
Chen, Hou-Tong ;
Taylor, Antoinette J. ;
Brener, Igal ;
Cich, Michael J. ;
Mittleman, Daniel M. .
APPLIED PHYSICS LETTERS, 2009, 94 (21)
[4]   Experimental demonstration of frequency-agile terahertz metamaterials [J].
Chen, Hou-Tong ;
O'Hara, John F. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Averitt, Richard D. ;
Shrekenhamer, David B. ;
Padilla, Willie J. .
NATURE PHOTONICS, 2008, 2 (05) :295-298
[5]   Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials [J].
Chen, Hou-Tong ;
Yang, Hao ;
Singh, Ranjan ;
O'Hara, John F. ;
Azad, Abul K. ;
Trugman, Stuart A. ;
Jia, Q. X. ;
Taylor, Antoinette J. .
PHYSICAL REVIEW LETTERS, 2010, 105 (24)
[6]   A Reconfigurable Active Huygens' Metalens [J].
Chen, Ke ;
Feng, Yijun ;
Monticone, Francesco ;
Zhao, Junming ;
Zhu, Bo ;
Jiang, Tian ;
Zhang, Lei ;
Kim, Yongjune ;
Ding, Xumin ;
Zhang, Shuang ;
Alu, Andrea ;
Qiu, Cheng-Wei .
ADVANCED MATERIALS, 2017, 29 (17)
[7]   High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images [J].
Chen, Wei Ting ;
Yang, Kuang-Yu ;
Wang, Chih-Ming ;
Huang, Yao-Wei ;
Sun, Greg ;
Chiang, I-Da ;
Liao, Chun Yen ;
Hsu, Wei-Lun ;
Lin, Hao Tsun ;
Sun, Shulin ;
Zhou, Lei ;
Liu, Ai Qun ;
Tsai, Din Ping .
NANO LETTERS, 2014, 14 (01) :225-230
[8]   Dual-polarity plasmonic metalens for visible light [J].
Chen, Xianzhong ;
Huang, Lingling ;
Muehlenbernd, Holger ;
Li, Guixin ;
Bai, Benfeng ;
Tan, Qiaofeng ;
Jin, Guofan ;
Qiu, Cheng-Wei ;
Zhang, Shuang ;
Zentgraf, Thomas .
NATURE COMMUNICATIONS, 2012, 3
[9]   An omnidirectional electromagnetic absorber made of metamaterials [J].
Cheng, Qiang ;
Cui, Tie Jun ;
Jiang, Wei Xiang ;
Cai, Ben Geng .
NEW JOURNAL OF PHYSICS, 2010, 12
[10]   A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control [J].
Cong, Longqing ;
Xu, Ningning ;
Han, Jiaguang ;
Zhang, Weili ;
Singh, Ranjan .
ADVANCED MATERIALS, 2015, 27 (42) :6630-+