Uncertainty Quantification in Control Problems for Flocking Models

被引:37
作者
Albi, Giacomo [1 ]
Pareschi, Lorenzo [2 ]
Zanella, Mattia [2 ]
机构
[1] Tech Univ Munich, Fak Math, D-85748 Munich, Germany
[2] Univ Ferrara, Dept Math & Comp Sci, I-44121 Ferrara, Italy
关键词
ASYMPTOTIC FLOCKING; DYNAMICS; DRIVEN;
D O I
10.1155/2015/850124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The optimal control of flocking models with random inputs is investigated froma numerical point of view. The effect of uncertainty in the interaction parameters is studied for a Cucker-Smale type model using a generalized polynomial chaos (gPC) approach. Numerical evidence of threshold effects in the alignment dynamic due to the random parameters is given. The use of a selective model predictive control permits steering of the system towards the desired state even in unstable regimes.
引用
收藏
页数:14
相关论文
共 23 条
[1]   Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises [J].
Ahn, Shin Mi ;
Ha, Seung-Yeal .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
[2]   Boltzmann-type control of opinion consensus through leaders [J].
Albi, G. ;
Pareschi, L. ;
Zanella, M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2028)
[3]   STABILITY ANALYSIS OF FLOCK AND MILL RINGS FOR SECOND ORDER MODELS IN SWARMING [J].
Albi, G. ;
Balague, D. ;
Carrillo, J. A. ;
Von Brecht, J. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (03) :794-818
[4]   KINETIC DESCRIPTION OF OPTIMAL CONTROL PROBLEMS AND APPLICATIONS TO OPINION CONSENSUS [J].
Albi, Giacomo ;
Herty, Michael ;
Pareschi, Lorenzo .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (06) :1407-1429
[5]  
[Anonymous], MEAN FIELD SEL UNPUB
[6]  
[Anonymous], MEAN FIELD GAMES MOD
[7]  
[Anonymous], ABSTR APPL ANAL
[8]  
[Anonymous], 1987, Computer Graphics, DOI DOI 10.1145/37402
[9]  
[Anonymous], MATH PROBLE IN PRESS
[10]   Transformations of Wiener integrals under translations [J].
Cameron, RH ;
Martin, WT .
ANNALS OF MATHEMATICS, 1944, 45 :386-396