Optimal Transport for Gaussian Mixture Models

被引:53
作者
Chen, Yongxin [1 ]
Georgiou, Tryphon T. [2 ]
Tannenbaum, Allen [3 ,4 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[3] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
关键词
Gaussian mixture models; optimal mass transport; statistical signal analysis; Wasserstein metric; GEOMETRY; BARYCENTERS;
D O I
10.1109/ACCESS.2018.2889838
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce an optimal mass transport framework on the space of Gaussian mixture models. These models are widely used in statistical inference. Specifically, we treat the Gaussian mixture models as a submanifold of probability densities equipped with the Wasserstein metric. The topology induced by optimal transport is highly desirable and natural because, in contrast to total variation and other metrics, the Wasserstein metric is weakly continuous (i.e., convergence is equivalent to the convergence of moments). Thus, our approach provides natural ways to compare, interpolate, and average Gaussian mixture models. Moreover, the approach has low computational complexity. Different aspects of the framework are discussed, and examples are presented for illustration purposes.
引用
收藏
页码:6269 / 6278
页数:10
相关论文
共 36 条
  • [1] BARYCENTERS IN THE WASSERSTEIN SPACE
    Agueh, Martial
    Carlier, Guillaume
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 904 - 924
  • [2] Akaho S, 2008, LECT NOTES COMPUT SC, V5163, P1, DOI 10.1007/978-3-540-87536-9_1
  • [3] A fixed-point approach to barycenters in Wasserstein space
    Alvarez-Esteban, Pedro C.
    del Barrio, E.
    Cuesta-Albertos, J. A.
    Matran, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) : 744 - 762
  • [4] Minimizing flows for the Monge-Kantorovich problem
    Angenent, S
    Haker, S
    Tannenbaum, A
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) : 61 - 97
  • [5] [Anonymous], 2006, LECT MATH
  • [6] [Anonymous], 2007, Amer Mathematical Society
  • [7] [Anonymous], 1999, Differential equations methods for the Monge-Kantorovich mass transfer problem
  • [8] Arjovsky M, 2017, PR MACH LEARN RES, V70
  • [9] Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
  • [10] ITERATIVE BREGMAN PROJECTIONS FOR REGULARIZED TRANSPORTATION PROBLEMS
    Benamou, Jean-David
    Carlier, Guillaume
    Cuturi, Marco
    Nenna, Luca
    Peyre, Gabriel
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) : A1111 - A1138