Optimal Transport for Gaussian Mixture Models

被引:53
|
作者
Chen, Yongxin [1 ]
Georgiou, Tryphon T. [2 ]
Tannenbaum, Allen [3 ,4 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[3] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
关键词
Gaussian mixture models; optimal mass transport; statistical signal analysis; Wasserstein metric; GEOMETRY; BARYCENTERS;
D O I
10.1109/ACCESS.2018.2889838
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce an optimal mass transport framework on the space of Gaussian mixture models. These models are widely used in statistical inference. Specifically, we treat the Gaussian mixture models as a submanifold of probability densities equipped with the Wasserstein metric. The topology induced by optimal transport is highly desirable and natural because, in contrast to total variation and other metrics, the Wasserstein metric is weakly continuous (i.e., convergence is equivalent to the convergence of moments). Thus, our approach provides natural ways to compare, interpolate, and average Gaussian mixture models. Moreover, the approach has low computational complexity. Different aspects of the framework are discussed, and examples are presented for illustration purposes.
引用
收藏
页码:6269 / 6278
页数:10
相关论文
共 50 条
  • [1] Distributionally robust optimization using optimal transport for Gaussian mixture models
    Kammammettu, Sanjula
    Yang, Shu-Bo
    Li, Zukui
    OPTIMIZATION AND ENGINEERING, 2024, 25 (03) : 1571 - 1596
  • [2] Lighter, Better, Faster Multi-source Domain Adaptation with Gaussian Mixture Models and Optimal Transport
    Montesuma, Eduardo Fernandes
    Mboula, Fred Ngole
    Souloumiac, Antoine
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-RESEARCH TRACK, PT VI, ECML PKDD 2024, 2024, 14946 : 21 - 38
  • [3] An Asymptotically MSE-Optimal Estimator Based on Gaussian Mixture Models
    Koller, Michael
    Fesl, Benedikt
    Turan, Nurettin
    Utschick, Wolfgang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4109 - 4123
  • [4] Gaussian mixture models for the optimal sparse sampling of offshore wind resource
    Marcille, Robin
    Thiebaut, Maxime
    Tandeo, Pierre
    Filipot, Jean-Francois
    WIND ENERGY SCIENCE, 2023, 8 (05) : 771 - 786
  • [5] An Optimal Transport Perspective on Gamma Gaussian Inverse-Wishart Mixture Reduction
    D'Ortenzio, Alessandro
    Manes, Costanzo
    Orguner, Umut
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [6] Nonparametric Mixture MLEs Under Gaussian-Smoothed Optimal Transport Distance
    Han, Fang
    Miao, Zhen
    Shen, Yandi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (12) : 7823 - 7835
  • [7] Regularised Optimal Self-transport Is Approximate Gaussian Mixture Maximum Likelihood
    Mordant, Gilles
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 294 - 301
  • [8] Gaussian Mixture Models in R
    Chassagnol, Bastien
    Bichat, Antoine
    Boudjeniba, Cheima
    Wuillemin, Pierre-Henri
    Guedj, Mickael
    Gohel, David
    Nuel, Gregory
    Becht, Etienne
    R JOURNAL, 2023, 15 (02): : 56 - 76
  • [9] Deep Gaussian mixture models
    Cinzia Viroli
    Geoffrey J. McLachlan
    Statistics and Computing, 2019, 29 : 43 - 51
  • [10] Fuzzy Gaussian Mixture Models
    Ju, Zhaojie
    Liu, Honghai
    PATTERN RECOGNITION, 2012, 45 (03) : 1146 - 1158