Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region

被引:58
作者
Zhong, Z. H. [1 ,2 ,3 ]
Tang, R. X. [1 ,2 ]
Zhou, M. [2 ,4 ]
Deng, X. H. [2 ]
Pang, Y. [2 ]
Paterson, W. R. [5 ]
Giles, B. L. [5 ]
Burch, J. L. [6 ]
Tobert, R. B. [7 ]
Ergun, R. E. [8 ]
Khotyaintsev, Y. V. [9 ]
Lindquist, P. -A. [10 ]
机构
[1] Nanchang Univ, Sch Sci, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Jiangxi, Peoples R China
[3] Nanchang Univ, Sch Resources Environm & Chem Engn, Nanchang 330031, Jiangxi, Peoples R China
[4] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[5] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[6] Southwest Res Inst, San Antonio, TX 78238 USA
[7] Univ New Hampshire, Durham, NH 03824 USA
[8] Univ Colorado LASP, Boulder, CO 80303 USA
[9] Swedish Inst Space Phys, S-75121 Uppsala, Sweden
[10] Royal Inst Technol, SE-11428 Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
MMS; FIELD;
D O I
10.1103/PhysRevLett.120.075101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Magnetospheric Multiscale Overview and Science Objectives [J].
Burch, J. L. ;
Moore, T. E. ;
Torbert, R. B. ;
Giles, B. L. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :5-21
[2]   Electron-scale measurements of magnetic reconnection in space [J].
Burch, J. L. ;
Torbert, R. B. ;
Phan, T. D. ;
Chen, L. -J. ;
Moore, T. E. ;
Ergun, R. E. ;
Eastwood, J. P. ;
Gershman, D. J. ;
Cassak, P. A. ;
Argall, M. R. ;
Wang, S. ;
Hesse, M. ;
Pollock, C. J. ;
Giles, B. L. ;
Nakamura, R. ;
Mauk, B. H. ;
Fuselier, S. A. ;
Russell, C. T. ;
Strangeway, R. J. ;
Drake, J. F. ;
Shay, M. A. ;
Khotyaintsev, Yu. V. ;
Lindqvist, P. -A. ;
Marklund, G. ;
Wilder, F. D. ;
Young, D. T. ;
Torkar, K. ;
Goldstein, J. ;
Dorelli, J. C. ;
Avanov, L. A. ;
Oka, M. ;
Baker, D. N. ;
Jaynes, A. N. ;
Goodrich, K. A. ;
Cohen, I. J. ;
Turner, D. L. ;
Fennell, J. F. ;
Blake, J. B. ;
Clemmons, J. ;
Goldman, M. ;
Newman, D. ;
Petrinec, S. M. ;
Trattner, K. J. ;
Lavraud, B. ;
Reiff, P. H. ;
Baumjohann, W. ;
Magnes, W. ;
Steller, M. ;
Lewis, W. ;
Saito, Y. .
SCIENCE, 2016, 352 (6290)
[3]   Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection [J].
Chen, Li-Jen ;
Hesse, Michael ;
Wang, Shan ;
Gershman, Daniel ;
Ergun, Robert ;
Pollock, Craig ;
Torbert, Roy ;
Bessho, Naoki ;
Daughton, William ;
Dorelli, John ;
Giles, Barbara ;
Strangeway, Robert ;
Russell, Christopher ;
Khotyaintsev, Yuri ;
Burch, Jim ;
Moore, Thomas ;
Lavraud, Benoit ;
Phan, Tai ;
Avanov, Levon .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (12) :6036-6043
[4]  
Daughton W, 2011, NAT PHYS, V7, P539, DOI [10.1038/NPHYS1965, 10.1038/nphys1965]
[5]   Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS [J].
Eastwood, J. P. ;
Phan, T. D. ;
Cassak, P. A. ;
Gershman, D. J. ;
Haggerty, C. ;
Malakit, K. ;
Shay, M. A. ;
Mistry, R. ;
Oieroset, M. ;
Russell, C. T. ;
Slavin, J. A. ;
Argall, M. R. ;
Avanov, L. A. ;
Burch, J. L. ;
Chen, L. J. ;
Dorelli, J. C. ;
Ergun, R. E. ;
Giles, B. L. ;
Khotyaintsev, Y. ;
Lavraud, B. ;
Lindqvist, P. A. ;
Moore, T. E. ;
Nakamura, R. ;
Paterson, W. ;
Pollock, C. ;
Strangeway, R. J. ;
Torbert, R. B. ;
Wang, S. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (10) :4716-4724
[6]   Observations of multiple X-line structure in the Earth's magnetotail current sheet: A Cluster case study [J].
Eastwood, JP ;
Sibeck, DG ;
Slavin, JA ;
Goldstein, ML ;
Lavraud, B ;
Sitnov, M ;
Imber, S ;
Balogh, A ;
Lucek, EA ;
Dandouras, I .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (11) :1-4
[7]   The Axial Double Probe and Fields Signal Processing for the MMS Mission [J].
Ergun, R. E. ;
Tucker, S. ;
Westfall, J. ;
Goodrich, K. A. ;
Malaspina, D. M. ;
Summers, D. ;
Wallace, J. ;
Karlsson, M. ;
Mack, J. ;
Brennan, N. ;
Pyke, B. ;
Withnell, P. ;
Torbert, R. ;
Macri, J. ;
Rau, D. ;
Dors, I. ;
Needell, J. ;
Lindqvist, P. -A. ;
Olsson, G. ;
Cully, C. M. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :167-188
[8]   Secondary Magnetic Islands Generated by the Kelvin-Helmholtz Instability in a Reconnecting Current Sheet [J].
Fermo, R. L. ;
Drake, J. F. ;
Swisdak, M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (25)
[9]   What Can We Learn about Magnetotail Reconnection from 2D PIC Harris-Sheet Simulations? [J].
Goldman, M. V. ;
Newman, D. L. ;
Lapenta, G. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :651-688
[10]   Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices [J].
Hasegawa, H ;
Fujimoto, M ;
Phan, TD ;
Rème, H ;
Balogh, A ;
Dunlop, MW ;
Hashimoto, C ;
TanDokoro, R .
NATURE, 2004, 430 (7001) :755-758