Gaussian approximation potentials: A brief tutorial introduction

被引:492
作者
Bartok, Albert P. [1 ]
Csanyi, Gabor [1 ]
机构
[1] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
interatomic potentials; machine learning; Gaussian process; ab initio; atomic environments; ENERGY SURFACES;
D O I
10.1002/qua.24927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a swift walk-through of our recent work that uses machine learning to fit interatomic potentials based on quantum mechanical data. We describe our Gaussian approximation potentials (GAP) framework, discuss a variety of descriptors, how to train the model on total energies and derivatives, and the simultaneous use of multiple models of different complexity. We also show a small example using QUIP, the software sandbox implementation of GAP that is available for noncommercial use. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1051 / 1057
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 2001, J. Am. Stat. Assoc.
[2]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[3]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[4]   Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations [J].
Behler, Joerg .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (40) :17930-17955
[5]   Classical and quasiclassical spectral analysis of CH5+ using an ab initio potential energy surface [J].
Brown, A ;
Braams, BJ ;
Christoffel, K ;
Jin, Z ;
Bowman, JM .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (17) :8790-8793
[6]   First-principles energetics of water clusters and ice: A many-body analysis [J].
Gillan, M. J. ;
Alfe, D. ;
Bartok, A. P. ;
Csanyi, G. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (24)
[7]   Potential Energy Surfaces Fitted by Artificial Neural Networks [J].
Handley, Chris M. ;
Popelier, Paul L. A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (10) :3371-3383
[8]   Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies [J].
Hansen, Katja ;
Montavon, Gregoire ;
Biegler, Franziska ;
Fazli, Siamac ;
Rupp, Matthias ;
Scheffler, Matthias ;
von Lilienfeld, O. Anatole ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3404-3419
[9]  
Mackay D. J. C., 2003, Information Theory, Inference, and Learning Algorithms
[10]   Development of a "First-Principles" Water Potential with Flexible Monomers. III. Liquid Phase Properties [J].
Medders, Gregory R. ;
Babin, Volodymyr ;
Paesani, Francesco .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (08) :2906-2910