Nonlinear Compton scattering in time-dependent electric fields beyond the locally constant crossed field approximation

被引:11
作者
Gelfer, E. G. [1 ]
Fedotov, A. M. [2 ]
Mironov, A. A. [3 ,4 ]
Weber, S. [1 ]
机构
[1] Czech Acad Sci, Inst Phys, ELI Beamlines, Dolni Brezany 25241, Czech Republic
[2] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[3] Sorbonne Univ, Ecole Polytech, Inst Polytech Paris, LULI,CNRS,CEA, F-75252 Paris, France
[4] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
IN-CELL CODE; LASER; INTENSITY; PHYSICS; WAVE;
D O I
10.1103/PhysRevD.106.056013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Locally constant crossed field approximation (LCFA) is a powerful tool for theoretical and numerical studies of various strong field quantum electrodynamical effects. We explore this approximation in detail for photon emission by a spinless particle in a strong time-dependent electric field. This kind of electromagnetic fields is of particular interest, because, in contrast to the comprehensively studied case of a plane wave, they are not crossed. We develop an approach for calculating photon emission probability in a generic time-dependent electric field, establish the range of applicability of LCFA, and calculate the corrections to it.
引用
收藏
页数:16
相关论文
共 88 条
[1]  
Abramowicz H, 2019, Arxiv, DOI arXiv:1909.00860
[2]   Conceptual design report for the LUXE experiment [J].
Abramowicz, H. ;
Acosta, U. ;
Altarelli, M. ;
Assmann, R. ;
Bai, Z. ;
Behnke, T. ;
Benhammou, Y. ;
Blackburn, T. ;
Boogert, S. ;
Borysov, O. ;
Borysova, M. ;
Brinkmann, R. ;
Bruschi, M. ;
Burkart, F. ;
Buesser, K. ;
Cavanagh, N. ;
Davidi, O. ;
Decking, W. ;
Dosselli, U. ;
Elkina, N. ;
Fedotov, A. ;
Firlej, M. ;
Fiutowski, T. ;
Fleck, K. ;
Gostkin, M. ;
Grojean, C. ;
Hallford, J. ;
Harsh, H. ;
Hartin, A. ;
Heinemann, B. ;
Heinzl, T. ;
Helary, L. ;
Hoffmann, M. ;
Huang, S. ;
Huang, X. ;
Idzik, M. ;
Ilderton, A. ;
Jacobs, R. ;
Kaempfer, B. ;
King, B. ;
Lahno, H. ;
Levanon, A. ;
Levy, A. ;
Levy, I. ;
List, J. ;
Lohmann, W. ;
Ma, T. ;
Macleod, A. J. ;
Malka, V. ;
Meloni, F. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (11) :2445-2560
[3]   Nonperturbative signatures of nonlinear Compton scattering [J].
Acosta, U. Hernandez ;
Otto, A. ;
Kaempfer, B. ;
Titov, A. I. .
PHYSICAL REVIEW D, 2020, 102 (11)
[4]   Design of narrow-band Compton scattering sources for nuclear resonance fluorescence [J].
Albert, F. ;
Anderson, S. G. ;
Gibson, D. J. ;
Marsh, R. A. ;
Wu, S. S. ;
Siders, C. W. ;
Barty, C. P. J. ;
Hartemann, F. V. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2011, 14 (05)
[5]  
[Anonymous], PEARL laser complex
[6]  
[Anonymous], EXTREME LIGHT INFRAS
[7]  
[Anonymous], Astra Gemini laser
[8]  
Bagrov V. G., 2014, The Dirac Equation and its Solutions, DOI 10.1515/9783110263299
[9]  
Baier V. N., 1981, J. Exp. Theor. Phys. Lett. B, V53, P688
[10]  
BAIER VN, 1968, SOV PHYS JETP-USSR, V26, P854