A series of Li2MnSiO4 samples with various Li, Mn, and/or Si concentrations are reported to study for the first time the effect of impurities and deviation from ideal stoichiometry on electrochemical behavior. Carbon-coated and nanosized powders are obtained at 600 degrees C and compared with those synthetized at 900 degrees C. Samples are investigated using XRD, SEM, high-resolution TEM, attenuated total reflection infrared spectroscopy and Brunauer-Emmett-Teller surface area to characterize crystal structure, particle size, impurity amount, morphology, and surface area. Electrochemical performance depends on impurities such as MnO as well as crystallite size, surface area, and non-stoichiometric phases, which lead to the formation of additional polymorphs such as Pmnb and P2(1)/n of Li2MnSiO4 at low calcination temperatures. A systematic analysis of the main parameters affecting the electrochemical behavior is performed and trends in synthesis are identified. The findings can be applied to optimize different synthesis routes for attaining stoichiometric and phase-pure Pmn2(1) Li2MnSiO4 as cathode material for Li-ion batteries.