Conductive Covalent Organic Frameworks Meet Micro-Electrical Energy Storage: Mechanism, Synthesis and Applications-A Review

被引:6
作者
Qian, Chengfei [1 ]
Wang, Ronghao [1 ]
Yu, Feng [1 ,2 ]
Liu, He [1 ,2 ]
Guo, Cong [1 ,2 ]
Sun, Kaiwen [3 ]
Li, Jingfa [1 ,2 ]
Bao, Weizhai [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Chem & Mat Sci, Inst Adv Mat & Flexible Elect IAMFE, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Chem & Mat Sci, Dept Mat Phys, Nanjing 210044, Peoples R China
[3] Univ New South Wales, Australian Ctr Adv Photovolta, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
基金
中国国家自然科学基金;
关键词
covalent organic frameworks; micro-electrochemical energy storage; density functional theory; conductive; CRYSTALLINE; PERFORMANCE; DESIGN; FILMS;
D O I
10.3390/cryst12101405
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Conductive covalent organic frameworks (c-COFs) have been widely used in electrochemical energy storage because of their highly adjustable porosity and modifiable skeletons. Additionally, the fast carrier migration and ion catalysis requirements of micro-electrochemical energy storages (MEESs) are perfectly matched with c-COFs. Therefore, c-COFs show great potential and unlimited prospects in MEESs. However, the main organic component blocks electron conduction, and the internal active sites are difficult to fully utilize, which limits the application of c-COFs. In order to overcome these obstacles, a great deal of research has been conducted on conductivity enhancement. This review first focuses on the exploration of c-COFs in the field of electrical conductivity. Then, the mechanism and explanation of the effect of synthesis on electrical conductivity enhancement are discussed, which emphasizes the range and suitability of c-COFs in MEESs. Finally, the excellent performance characteristics of c-COFs are demonstrated from the MEES perspective, with key points and potential challenges addressed. This review also predicts the direction of development of c-COFs in the future.
引用
收藏
页数:22
相关论文
共 139 条
[1]   Recent Advancement for the Synthesis of MXene Derivatives and Their Sensing Protocol [J].
Abbasi, Nasir Mahmood ;
Xiao, Yao ;
Peng, Ling ;
Duo, Yanhong ;
Wang, Lude ;
Zhang, Li ;
Wang, Bing ;
Zhang, Han .
ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (10)
[2]   Surface controlled pseudo-capacitive reactions enabling ultra-fast charging and long-life organic lithium ion batteries [J].
Amin, Kamran ;
Zhang, Jianqi ;
Zhou, Hang-Yu ;
Lu, Ruichiao ;
Miao Zhang ;
Ashraf, Nawal ;
Cheng YueLi ;
Mao, Lijuan ;
Faul, Charl F. J. ;
Wei, Zhixiang .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (08) :4179-4185
[3]   Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors [J].
An, Ning ;
Guo, Zhen ;
Xin, Jiao ;
He, Yuanyuan ;
Xie, Kefeng ;
Sun, Daming ;
Dong, Xiuyan ;
Hu, Zhongai .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (31) :16824-16833
[4]   Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks [J].
Ascherl, Laura ;
Sick, Torben ;
Margraf, Johannes T. ;
Lapidus, Saul H. ;
Calik, Mona ;
Hettstedt, Christina ;
Karaghiosoff, Konstantin ;
Doeblinger, Markus ;
Clark, Timothy ;
Chapman, Karena W. ;
Auras, Florian ;
Bein, Thomas .
NATURE CHEMISTRY, 2016, 8 (04) :310-316
[5]   Photoassisted High-Performance Lithium Anode Enabled by Oriented Crystal Planes [J].
Bao, Weizhai ;
Wang, Ronghao ;
Qian, Chengfei ;
Li, Muhan ;
Sun, Kaiwen ;
Yu, Feng ;
Liu, He ;
Guo, Cong ;
Li, Jingfa .
ACS NANO, 2022, 16 (10) :17454-17465
[6]   Porous Heteroatom-Doped Ti3C2Tx MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium-Sulfur Batteries [J].
Bao, Weizhai ;
Wang, Ronghao ;
Qian, Chengfei ;
Zhang, Zherui ;
Wu, Ruijun ;
Zhang, Yuhao ;
Liu, Fangyang ;
Li, Jingfa ;
Wang, Guoxiu .
ACS NANO, 2021, 15 (10) :16207-16217
[7]   Stable alkali metal anodes enabled by crystallographic optimization - a review [J].
Bao, Weizhai ;
Wang, Ronghao ;
Li, Bingqin ;
Qian, Chengfei ;
Zhang, Zherui ;
Li, Jingfa ;
Liu, Fangyang .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (37) :20957-20984
[8]   Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms [J].
Bi, Shuai ;
Yang, Can ;
Zhang, Wenbei ;
Xu, Junsong ;
Liu, Lingmei ;
Wu, Dongqing ;
Wang, Xinchen ;
Han, Yu ;
Liang, Qifeng ;
Zhang, Fan .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Acid Exfoliation of Imine-linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films [J].
Burke, David W. ;
Sun, Chao ;
Castano, Ioannina ;
Flanders, Nathan C. ;
Evans, Austin M. ;
Vitaku, Edon ;
McLeod, David C. ;
Lambeth, Robert H. ;
Chen, Lin X. ;
Gianneschi, Nathan C. ;
Dichtel, William R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (13) :5165-5171
[10]   Application of hard ceramic materials B4C in energy storage: Design B4C@C core-shell nanoparticles as electrodes for flexible all-solid-state micro-supercapacitors with ultrahigh cyclability [J].
Chang, Yukai ;
Sun, Xiaohui ;
Ma, Mengdong ;
Mu, Congpu ;
Li, Penghui ;
Li, Lei ;
Li, Mengzhu ;
Nie, Anmin ;
Xiang, Jianyong ;
Zhao, Zhisheng ;
He, Julong ;
Wen, Fusheng ;
Liu, Zhongyuan ;
Tian, Yongjun .
NANO ENERGY, 2020, 75