Analytical and numerical investigations of the modified Camassa-Holm equation

被引:15
作者
Abdelrahman, Mahmoud A. E. [1 ,2 ]
Alharbi, Abdulghani [1 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
PRAMANA-JOURNAL OF PHYSICS | 2021年 / 95卷 / 03期
关键词
Modified Camassa-Holm equation; Riccati-Bernoulli sub-ODE method; solitary wave solutions; moving mesh partial differential equations; moving adaptive scheme; 02; 30; Jr; 60; Cb; 04; 20; Jb; MOVING MESH METHODS; ELLIPTIC FUNCTION-METHOD; SOLITARY WAVE SOLUTIONS; F-EXPANSION METHOD; TANH METHOD; (G'/G)-EXPANSION METHOD; NONLINEAR EVOLUTION; OPTICAL SOLITONS; ADAPTIVE MESH;
D O I
10.1007/s12043-021-02153-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, analytical and numerical solutions to the simplified modified Camassa-Holm (MCH) equation by using the Riccati-Bernoulli (RB) sub-ODE method and moving mesh method are obtained. Some new solutions are given. The discrtisation of the presented model is introduced in the form of finite difference operators. Some 3D graphs for the presented solution are plotted with the aid of the Matlab software for suitable values of parameters. We introduce the comparison between numerical and exact solutions.
引用
收藏
页数:9
相关论文
共 50 条
[1]   On the new wave solutions to the MCH equation [J].
Abdelrahman, M. A. E. ;
Sohaly, M. A. .
INDIAN JOURNAL OF PHYSICS, 2019, 93 (07) :903-911
[2]   A note on Riccati-Bernoulli Sub-ODE method combined with complex transform method applied to fractional differential equations [J].
Abdelrahman, Mahmoud A.E. .
Nonlinear Engineering, 2018, 7 (04) :279-285
[3]   Fundamental Solutions for the Coupled KdV System and Its Stability [J].
Abdelrahman, Mahmoud A. E. ;
Almatrafi, M. B. ;
Alharbi, Abdulghani .
SYMMETRY-BASEL, 2020, 12 (03)
[4]   On the nonlinear new wave solutions in unstable dispersive environments [J].
Abdelrahman, Mahmoud A. E. ;
Abdo, N. F. .
PHYSICA SCRIPTA, 2020, 95 (04)
[5]   The new exact solutions for the deterministic and stochastic (2+1)-dimensional equations in natural sciences [J].
Abdelrahman, Mahmoud A. E. ;
Sohaly, M. A. ;
Alharbi, Abdulghani .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01) :834-843
[6]   The development of the deterministic nonlinear PDEs in particle physics to stochastic case [J].
Abdelrahman, Mahmoud A. E. ;
Sohaly, M. A. .
RESULTS IN PHYSICS, 2018, 9 :344-350
[7]   Super electron acoustic propagations in critical plasma density [J].
Abdelwahed, H. G. .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01) :1363-1368
[8]  
Abdelwahed H.G., 2020, J TAIBAH UNIV SCI, V14, P777, DOI [10.1080/16583655.2020.1774136, DOI 10.1080/16583655.2020.1774136]
[9]  
Alharbi AR, 2020, INT J MATH COMPUT SC, V15, P367
[10]  
Alharbi A R, 2016, Numerical solution of thin-film flow equations using adaptive moving mesh methods