Positive bound state solutions for some Schrodinger-Poisson systems

被引:56
作者
Cerami, Giovanna [1 ]
Molle, Riccardo [2 ]
机构
[1] Politecn Bari, Dipartimento Matemat, Via Amendola 126-B, I-70126 Bari, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Schrodinger-Poisson systems; nonsymmetric coefficients; bound state solutions; MAXWELL EQUATIONS; EXISTENCE; POTENTIALS;
D O I
10.1088/0951-7715/29/10/3103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with a class of Schrodinger-Poisson systems, where the coupling term and the other coefficients do not have any symmetry property. Moreover, the setting we consider does not allow the existence of ground state solutions. Under suitable assumptions on the decay rate of the coefficients, we prove existence of a bound state, finite energy solution.
引用
收藏
页码:3103 / 3119
页数:17
相关论文
共 20 条
[1]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[2]  
[Anonymous], 1990, REV MAT IBEROAM, DOI DOI 10.4171/RMI/92
[3]  
[Anonymous], 2008, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics
[4]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[5]   On the existence of a positive solution of semilinear elliptic equations in unbounded domains [J].
Bahri, A ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :365-413
[6]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[7]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[8]   Solitons in Schrodinger-Maxwell equations [J].
Benci, Vieri ;
Fortunato, Donato .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 15 (01) :101-132
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[10]   CONCENTRATION ON CIRCLES FOR NONLINEAR SCHRODINGER-POISSON SYSTEMS WITH UNBOUNDED POTENTIALS VANISHING AT INFINITY [J].
Bonheure, Denis ;
Di Cosmo, Jonathan ;
Mercuri, Carlo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (02)