Trapped electron coupled to superconducting devices

被引:14
作者
Bushev, P. [1 ]
Bothner, D. [2 ,3 ]
Nagel, J. [2 ,3 ]
Kemmler, M. [2 ,3 ]
Konovalenko, K. B. [2 ,3 ]
Loerincz, A. [4 ]
Ilin, K. [4 ]
Siegel, M. [4 ]
Koelle, D. [2 ,3 ]
Kleiner, R. [2 ,3 ]
Schmidt-Kaler, F. [5 ]
机构
[1] Karlsruher Inst Technol, Inst Phys, D-76131 Karlsruhe, Germany
[2] Univ Tubingen, Inst Phys, D-72076 Tubingen, Germany
[3] Univ Tubingen, Ctr Collect Quantum Phenomena, D-72076 Tubingen, Germany
[4] Karlsruher Inst Technol, Inst Mikro & Nanoelekt Syst, D-76187 Karlsruhe, Germany
[5] Johannes Gutenberg Univ Mainz, QUANTUM, Inst Phys, D-55128 Mainz, Germany
基金
以色列科学基金会;
关键词
QUANTUM; PHOTON;
D O I
10.1140/epjd/e2011-10517-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose to couple a trapped single electron to superconducting structures located at a variable distance from the electron. The electron is captured in a cryogenic Penning trap using electric fields and a static magnetic field in the tesla range. Measurements on the electron will allow investigating the properties of the superconductor such as vortex structure, damping and decoherence. We propose to couple a superconducting microwave resonator to the electron in order to realize a circuit QED-like experiment, as well as to couple superconducting Josephson junctions or superconducting quantum interferometers (SQUIDs) to the electron. The electron may also be coupled to a vortex which is situated in a double well potential, realized by nearby pinning centers in the superconductor, acting as a quantum mechanical two level system that can be controlled by a transport current tilting the double well potential. The electron may also be coupled to a single vortex, thus hybridizing an elementary excitation of a superconductor and an elementary particle.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 47 条
[1]  
ADIVARAHAN V, 2004, APPL PHYS LETT, V85, P2956
[2]   A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators [J].
Andre, A. ;
Demille, D. ;
Doyle, J. M. ;
Lukin, M. D. ;
Maxwell, S. E. ;
Rabl, P. ;
Schoelkopf, R. J. ;
Zoller, P. .
NATURE PHYSICS, 2006, 2 (09) :636-642
[3]   Cryogenic ion trapping systems with surface-electrode traps [J].
Antohi, P. B. ;
Schuster, D. ;
Akselrod, G. M. ;
Labaziewicz, J. ;
Ge, Y. ;
Lin, Z. ;
Bakr, W. S. ;
Chuang, I. L. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (01)
[4]   COMPOSITE FLUX-LINE LATTICES STABILIZED IN SUPERCONDUCTING FILMS BY A REGULAR ARRAY OF ARTIFICIAL DEFECTS [J].
BAERT, M ;
METLUSHKO, VV ;
JONCKHEERE, R ;
MOSHCHALKOV, VV ;
BRUYNSERAEDE, Y .
PHYSICAL REVIEW LETTERS, 1995, 74 (16) :3269-3272
[5]   New determination of the electron's mass -: art. no. 011603 [J].
Beier, T ;
Häffner, H ;
Hermanspahn, N ;
Karshenboim, SG ;
Kluge, HJ ;
Quint, W ;
Stahl, S ;
Verdú, J ;
Werth, G .
PHYSICAL REVIEW LETTERS, 2002, 88 (01) :4
[6]   GEONIUM THEORY - PHYSICS OF A SINGLE ELECTRON OR ION IN A PENNING TRAP [J].
BROWN, LS ;
GABRIELSE, G .
REVIEWS OF MODERN PHYSICS, 1986, 58 (01) :233-311
[7]   Multiphoton spectroscopy of a hybrid quantum system [J].
Bushev, P. ;
Mueller, C. ;
Lisenfeld, J. ;
Cole, J. H. ;
Lukashenko, A. ;
Shnirman, A. ;
Ustinov, A. V. .
PHYSICAL REVIEW B, 2010, 82 (13)
[8]   Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing [J].
Bushev, P. ;
Stahl, S. ;
Natali, R. ;
Marx, G. ;
Stachowska, E. ;
Werth, G. ;
Hellwig, M. ;
Schmidt-Kaler, F. .
EUROPEAN PHYSICAL JOURNAL D, 2008, 50 (01) :97-102
[9]   Meissner Effect in Superconducting Microtraps [J].
Cano, D. ;
Kasch, B. ;
Hattermann, H. ;
Kleiner, R. ;
Zimmermann, C. ;
Koelle, D. ;
Fortagh, J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (18)
[10]   Scalable quantum processor with trapped electrons [J].
Ciaramicoli, G ;
Marzoli, I ;
Tombesi, P .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)