Deep Learning Based Techniques for Sentiment Analysis: A Survey

被引:14
作者
Etaiwi, Wael [1 ]
Suleiman, Dima [2 ]
Awajan, Arafat [3 ,4 ]
机构
[1] Princess Sumaya Univ Technol, King Talal Sch Business Technol, Amman, Jordan
[2] Univ Jordan, King Abdullah II Sch Informat Technol, Amman, Jordan
[3] Princess Sumaya Univ Technol, King Hussein Sch Comp Sci, Amman, Jordan
[4] Mutah Univ, Coll Informat Technol, Alkarak, Jordan
来源
INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS | 2021年 / 45卷 / 07期
关键词
natural nanguage processing; sentiment analysis; deep learning;
D O I
10.31449/inf.v45i7.3674
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The automated representation of human language using a variety of techniques is called Natural Language Processing (NLP). Improvements to NLP applications are important and can be accomplished using a variety of methods, such as graphs, deep neural networks, and word embedding. Sentiment classification, which attempts to automatically classify opinionated text as positive, negative, or neutral, is a fundamental activity of sentiment analysis. Sentiment analysis methods focused on deep learning over the past five years are analyzed in this review.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 30 条
[1]  
Al Sallab A., 2015, P 2 WORKSHOP ARABIC, P9, DOI 10.18653/v1/W15-3202
[2]  
Alhijawi B., 2021, LECT NOTES NETWORKS, V1, DOI [10.1007/978-981-16-2377-6_12, DOI 10.1007/978-981-16-2377-6_12]
[3]  
Altaher A, 2017, INT J ADV APPL SCI, V4, P43, DOI 10.21833/ijaas.2017.08.007
[4]   Long short-term memory [J].
Hochreiter, S ;
Schmidhuber, J .
NEURAL COMPUTATION, 1997, 9 (08) :1735-1780
[5]  
Baktha K, 2017, 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), P2047, DOI 10.1109/ICCSP.2017.8286763
[6]  
Beigi G, 2016, STUD COMPUT INTELL, V639, P313, DOI 10.1007/978-3-319-30319-2_13
[7]  
Biltawi M, 2016, INT CONF INFORM COMM, P339, DOI 10.1109/IACS.2016.7476075
[8]   Convolutional Neural Networks for Multimedia Sentiment Analysis [J].
Cai, Guoyong ;
Xia, Binbin .
NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2015, 2015, 9362 :159-167
[9]   Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers-A study to show how popularity is affecting accuracy in social media [J].
Chakraborty, Koyel ;
Bhatia, Surbhi ;
Bhattacharyya, Siddhartha ;
Platos, Jan ;
Bag, Rajib ;
Hassanien, Aboul Ella .
APPLIED SOFT COMPUTING, 2020, 97
[10]   Exploration of social media for sentiment analysis using deep learning [J].
Chen, Liang-Chu ;
Lee, Chia-Meng ;
Chen, Mu-Yen .
SOFT COMPUTING, 2020, 24 (11) :8187-8197