Radiomics: the bridge between medical imaging and personalized medicine

被引:3715
作者
Lambin, Philippe [1 ]
Leijenaar, Ralph T. H. [1 ]
Deist, Timo M. [1 ]
Peerlings, Jurgen [1 ,2 ]
de Jong, Evelyn E. C. [1 ]
van Timmeren, Janita [1 ]
Sanduleanu, Sebastian [1 ]
Larue, Ruben T. H. M. [1 ]
Even, Aniek J. G. [1 ]
Jochems, Arthur [1 ]
van Wijk, Yvonka [1 ]
Woodruff, Henry [1 ]
van Soest, Johan [3 ]
Lustberg, Tim [3 ]
Roelofs, Erik [1 ,3 ]
van Elmpt, Wouter [3 ]
Dekker, Andre [3 ]
Mottaghy, Felix M. [2 ,4 ]
Wildberger, Joachim E. [2 ]
Walsh, Sean [1 ]
机构
[1] Maastricht Univ, Med Ctr, GROW, Lab D, Univ Singel 40, NL-6229 ER Maastricht, Netherlands
[2] Maastricht Univ, Med Ctr, GROW, Dept Radiol & Nucl Med, Doctor Tanslaan 12, NL-6229 ET Maastricht, Netherlands
[3] Maastricht Univ, Med Ctr, GROW, Dept Radiat Oncol MAASTRO, Doctor Tanslaan 12, NL-6229 ET Maastricht, Netherlands
[4] Univ Hosp RWTH Aachen, Dept Nucl Med, Pauwelsstr 30, D-52074 Aachen, Germany
关键词
LEARNING HEALTH-CARE; DECISION-SUPPORT-SYSTEMS; FDG-PET RADIOMICS; GENE-EXPRESSION; INTRINSIC RADIOSENSITIVITY; RADIATION-THERAPY; CANCER-PATIENTS; F-18-FDG PET; RADIOTHERAPY RESEARCH; PROGNOSTIC-FACTOR;
D O I
10.1038/nrclinonc.2017.141
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Radiomics, the high-throughput mining of quantitative image features from standard-of-care medical imaging that enables data to be extracted and applied within clinical-decision support systems to improve diagnostic, prognostic, and predictive accuracy, is gaining importance in cancer research. Radiomic analysis exploits sophisticated image analysis tools and the rapid development and validation of medical imaging data that uses image-based signatures for precision diagnosis and treatment, providing a powerful tool in modern medicine. Herein, we describe the process of radiomics, its pitfalls, challenges, opportunities, and its capacity to improve clinical decision making, emphasizing the utility for patients with cancer. Currently, the field of radiomics lacks standardized evaluation of both the scientific integrity and the clinical relevance of the numerous published radiomics investigations resulting from the rapid growth of this area. Rigorous evaluation criteria and reporting guidelines need to be established in order for radiomics to mature as a discipline. Herein, we provide guidance for investigations to meet this urgent need in the field of radiomics.
引用
收藏
页码:749 / 762
页数:14
相关论文
共 124 条
  • [1] Rapid-Learning System for Cancer Care
    Abernethy, Amy P.
    Etheredge, Lynn M.
    Ganz, Patricia A.
    Wallace, Paul
    German, Robert R.
    Neti, Chalapathy
    Bach, Peter B.
    Murphy, Sharon B.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (27) : 4268 - 4274
  • [2] The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review
    Aerts, Hugo J. W. L.
    [J]. JAMA ONCOLOGY, 2016, 2 (12) : 1636 - 1642
  • [3] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [4] Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration
    Altman, Douglas G.
    McShane, Lisa M.
    Sauerbrei, Willi
    Taube, Sheila E.
    [J]. PLOS MEDICINE, 2012, 9 (05)
  • [5] [Anonymous], 2018, ANTI-CANCER DRUG, DOI [DOI 10.3322/caac.20115, DOI 10.1097/CAD.0000000000000617]
  • [6] [Anonymous], 1969, NATURE, V224, P636
  • [7] [Anonymous], 2017, QUANT IM BIOM ALL QI
  • [8] [Anonymous], 2017, EUR UMBR PROT NSCLC
  • [9] Test-Retest Reproducibility Analysis of Lung CT Image Features
    Balagurunathan, Yoganand
    Kumar, Virendra
    Gu, Yuhua
    Kim, Jongphil
    Wang, Hua
    Liu, Ying
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Korn, Rene
    Zhao, Binsheng
    Schwartz, Lawrence H.
    Basu, Satrajit
    Eschrich, Steven
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2014, 27 (06) : 805 - 823
  • [10] Reproducibility and Prognosis of Quantitative Features Extracted from CT Images
    Balagurunathan, Yoganand
    Gu, Yuhua
    Wang, Hua
    Kumar, Virendra
    Grove, Olya
    Hawkins, Sam
    Kim, Jongphil
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. TRANSLATIONAL ONCOLOGY, 2014, 7 (01) : 72 - 87