A nonlinear parabolic problem with singular terms and nonregular data

被引:17
作者
Oliva, Francescantonio [1 ]
Petitta, Francesco [2 ]
机构
[1] Sapienza Univ Roma, Ist Nazl Alta Matemat Indam, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, Italy
[2] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, Italy
关键词
Singular parabolic problems; Existence and uniqueness; Measure data; RENORMALIZED SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.na.2019.02.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence of nonnegative solutions to a nonlinear parabolic boundary value problem with a general singular lower order term and a nonnegative measure as nonhomogeneous datum, of the form {u(t) - Delta(u)(p) = h (u) f + mu in Omega x (0,T), u = 0 on partial derivative Omega x (0,T), u = u(0) in Omega x {0}, where Omega is an open bounded subset of R-N (N >= 2), up is a nonnegative integrable function, Delta(p) is the p-Laplace operator, mu is a nonnegative bounded Radon measure on Omega x (0, T) and f is a nonnegative function of L-1 ( Omega x (0, T)). The term h is a positive continuous function possibly blowing up at the origin. Furthermore, we show uniqueness of finite energy solutions in presence of a nonincreasing h. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 36 条
[1]  
[Anonymous], ARXIV180806422
[2]   Global estimates for nonlinear parabolic equations [J].
Baroni, Paolo ;
Di Castro, Agnese ;
Palatucci, Giampiero .
JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (01) :163-195
[3]   Nonlinear parabolic equations with measure data [J].
Boccardo, L ;
DallAglio, A ;
Gallouet, T ;
Orsina, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 147 (01) :237-258
[4]   ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS OF SOLUTIONS TO ELLIPTIC AND PARABOLIC EQUATIONS [J].
BOCCARDO, L ;
MURAT, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :581-597
[5]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169
[6]  
Boccardo L, 2015, DIFFER INTEGRAL EQU, V28, P1155
[7]   Semilinear elliptic equations with singular nonlinearities [J].
Boccardo, Lucio ;
Orsina, Luigi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :363-380
[8]  
Bougherara B, 2015, ELECTRON J DIFFER EQ, P19
[9]   Existence and uniqueness for p-Laplace equations involving singular nonlinearities [J].
Canino, Annamaria ;
Sciunzi, Berardino ;
Trombetta, Alessandro .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02)
[10]   Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems [J].
Carrillo, J ;
Wittbold, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (01) :93-121